Harzer Roller: Linker-Based Instrumentation for Enhanced
Embedded Security Testing

Katharina Bogad
Fraunhofer AISEC
Garching near Munich, Germany
katharina.bogad@aisec.fraunhofer.de

ABSTRACT

Due to the rise of the Internet of Things, there are many new chips
and platforms available for hobbyists and industry alike to build
smart devices. The SDKs for these new platforms usually include
closed-source binaries containing wireless protocol implementa-
tions, cryptographic implementations, or other library functions,
which are shared among all user code across the platform. Lever-
aging such a library vulnerability has a high impact on a given
platform. However, as these platforms are often shipped ready-
to-use, classic debug infrastructure like JTAG is often times not
available.

In this paper, we present a method, called Harzer Roller, to en-
hance embedded firmware security testing on resource-constrained
devices. With the Harzer Roller, we hook instrumentation code
into function call and return. The hooking not only applies to the
user application code but to the SDK used to build firmware as well.
While we keep the design of the Harzer Roller generally architec-
ture independent, we provide an implementation for the ESP8266
Wi-Fi IoT chip based on the xtensa architecture.

We show that the Harzer Roller can be leveraged to trace exe-
cution flow through libraries without available source code and
to detect stack-based buffer-overflows. Additionally, we showcase
how the overflow detection can be used to dump debugging infor-
mation for later analysis. This enables better usage of a variety of
software security testing methods like fuzzing of wireless protocol
implementations or proof-of-concept attack development.

CCS CONCEPTS

« Security and privacy — Mobile and wireless security; Software
security engineering; Software reverse engineering.

KEYWORDS

linker-based static instrumentation; binary instrumentation; em-
bedded firmware instrumentation; SDK analysis; software testing;
fuzzing

ACM Reference Format:

Katharina Bogad and Manuel Huber. 2019. Harzer Roller: Linker-Based
Instrumentation for Enhanced Embedded Security Testing. In Proceedings
of Reversing and Offensive-oriented Trends Symposium (ROOTS ’19). ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

ROOTS °19, November 28-29, 2019, Vienna, Austria

© 2019 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
Reversing and Offensive-oriented Trends Symposium (ROOTS °19), https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

Manuel Huber
Fraunhofer AISEC
Garching near Munich, Germany
manuel.huber@aisec.fraunhofer.de

1 INTRODUCTION

In recent years, significant advances have been made in embedded
technology. Cheap computing technology paired with pervasive
internet connectivity led to the rise of a new class of embedded
devices and computing technologies, which have been summarized
under the name Internet of Things (IoT).

Historically, these highly embedded computing devices have a
bad track record regarding their security and have been a prime
target for hackers of all sorts. Oftentimes these devices are built
to fulfil a designated task and either employ no or insufficiently
secure means to upgrade the embedded firmware. Although this is
starting to change, the firmware life cycle poses a major challenge.
As these devices are often spatially dispersed and deployed in large
quantity, the firmware needs to be especially secure. Any attack
that could reliably achieve execution of arbitrary code also has the
ability to permanently destroy deployed hardware, for example
through targeted Serial Peripheral Interface (SPI) flash wear-out
of the boot sector. A common off the shelf SPI flash memory chip,
for instance, the Winbond W25Q128V, is specified with ,more than
100,000 program and erase cycles [1]. When targeted at a relatively
small number of flash cells, flash wearing can be achieved in a few
minutes. Depending on the specific device in question, other DoS
attacks or device misuse might be possible as well [4].

In the past, IoT devices have been leveraged for large scale at-
tacks, for example with the Mirai botnet [10]. Efforts have been
made to secure the development process of firmware, however little
attention has been drawn on coprocessors of such an IoT system. A
broadly used communication/Wi-Fi coprocessor with over 100 mil-
lion devices in use across the globe [18] is the ESP8266 family of the
Chinese company Espressif, or its successor, the ESP32. These chips
either employ a standard AT firmware which provides network
connectivity over a serial UART connection or can alternatively be
programmed with custom firmware using Espressif’s SDK. While
the SDK contains some open source components, various BLOBs
linked into every built firmware remain. There have been efforts to
reverse engineer these parts [15] to establish a fully open source
stack, but some of these BLOBs are still required.

The result is that even if the main application code is correct and
free of bugs, the SDK could potentially introduce vulnerabilities
that are highly invisible due to the nature of binary code. While
some vendors open source their SDKs — or at least make it available
under a source available license — often times, the SDK is provided
in binary-only form; thus preventing the use of source code in-
strumentation techniques. To actively search for vulnerabilities in
such a scenario, black box testing of these closed-source compo-
nents needs to be conducted. However due to the constraints of
embedded systems, usually there is no MMU available. This has

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ROOTS ’19, November 28-29, 2019, Vienna, Austria

Katharina Bogad and Manuel Huber

_} A illegal_instruction:
hr fet: cmp a0, Oxabababab
fet: jumpz fail
inc clear // clear exc.
move = Ir -
11 fct > move al, =
ca ¢ move lr, Oxabababab dec
’—) jump hr_fet return = jump al
—| fail :
call print_fail
’ — Normal execution flow Harzer Roller calls/jumps — Hardware exception ‘ hlt

Figure 1: Call and return control flow hijacking with the Harzer Roller in pseudo-assembly.

consequences unfavourable for vulnerability testing: (1) there is no
means to intercept memory accesses and (2) most of the times there
is no way to trap accesses to unmapped memory (such an access
either returns a repeated pattern of fixed values, completely ran-
dom values, zero or any combination of those). This makes memory
corruptions highly invisible, as pointed out by Muench et al. [13].
For instance, memory corruptions might not immediately trigger a
fault but only become obvious at a later crash or malfunction of the
device. Furthermore, source code instrumentation using stack ca-
naries or various sanitizers is usually neglected to save the limited
computational resources.

To increase visibility of memory corruptions, happening for
example through stack overflows, various approaches have been
proposed before: (1) full system virtualization, where an IoT chip
in its entirety is replicated in a virtual machine like in [3], which is
oftentimes difficult to achieve because the exact environment and
all physical interactions (with SPI flash, GPIO pins, ...) are hard to
simulate, (2) partial virtualization like PROSPECT [9] which solves
this problem by forwarding hardware and pin access to the real
device but impacts execution speed or traditional debug interfaces
like the industry-standard JTAG port, which is — especially in com-
mercially available chips — oftentimes not available. Depending
on the exact virtualization setup, having access to the source code
might be a requirement.

In this paper, we present a novel method to instrument object-
only code that is commonly found in SDKs at the linker stage.
We present an approach to instrument function calls as well as
returns from these functions, using only means provided by the
linker. Our approach is feasible even without source code access
of the object files to be linked. We showcase our method on an
example platform, the Espressif ESP8266 based on the xtensa In-
struction Set Architecture (ISA), and show function call tracing and
detection of overwritten saved return addresses as two possible
real-world applications of the our method, as well as their applica-
tion in automated vulnerability discovery via e.g. fuzzing. Inspired
by stack canaries, we call our method Harzer Roller!. Furthermore,
we discuss potential attack vectors specific to the ESP8266.

Uhttps://en.wikipedia.org/wiki/Harz_Roller

2 LINKER-BASED INSTRUMENTATION

In this section, we describe the design of the Harzer Roller. We first
give a brief overview, continue by explaining the Harzer Roller’s
call-path instrumentation, and, based on this technique, introduce
return-path instrumentation.

We design the Harzer Roller in a way that allows us to hook
the control flow of executables on calls and returns to and from
subroutines, respectively. To achieve this, we modify the object files
before linking the final executable so that the linker relocates calls
to an instrumented function to an assembly sequence of our choice
(see Subsection 2.1), instead of modifying the pro- and epilogues
of the function themselves. At the end of our injected assembly
sequence, we jump to the called function. Our injected assembly
sequence may override the link register with a canary value that
is guaranteed to result in an illegal instruction exception when
jumped to. We introduce a fault handler that can recover from
such an exception, thus hooking into returns from subroutines (see
Subsection 2.2). We ensure that our method is able to preserve
semantics between function calls and returns.

Figure 1 depicts this linker-based binary instrumentation which
we explain in the following in more detail. It is noteworthy that
the instrumentation of the return path is optional and the Harzer
Roller can also be used to instrument the call path only.

2.1 Call-Path Instrumentation

In our approach, we treat functions as black boxes. We thus need
to preserve all registers and stack contents throughout the instru-
mentation. These are considered input to a function. A special case
to this is the link register which should never be modified by the
called subroutine.? Modifying the contents of this link register how-
ever is the target of an attacker attempting to gain control over the
execution flow.

To instrument any function that gets called by either another
object or the user application, we need to wrap the function and
inject code into the execution flow. For function entry (i.e. upon a
call to a function), we leverage gcc’s -ffunction-sections flag,
which places every function in a source file in its own section. While

2Whenever we refer to the link register, we mean the place the saved return address is
stored. While on some architectures a CPU register is used, the return address may be
placed on the stack on other architectures.

https://en.wikipedia.org/wiki/Harz_Roller

Harzer Roller

our method also works without this flag, it is more effective when
enabled because we have a higher number of relocations to hijack.
We inject the code into the execution flow in three steps: First, we
rename the symbol in the object file that should be instrumented
and prefix it with some value, for example hr_. Obviously, we need
to make sure that this renaming does not introduce conflicts with
already existing symbols in the object files to be linked. We then re-
add all symbols we renamed in the first step, but instead of pointing
to the concrete implementation provided in the object file, we leave
them as UNDEFINED in order to be filled in by the linker later. If
the function gets called from another object file, this shifts the
execution flow from the grey direct call in the left half of Figure 1.
Last, we look for all references to the re-named functions in all
sections with relocation information and rewrite those references
that point to the renamed symbols to point to the added imports
instead. In this way, we shift the calls within the object file to the
Harzer Roller control flow path. We then generate another object file
that contains all wrapping code needed for the instrumented object
file and finally ensures the jumps to the real, renamed function.
This completes the upper green call path depicted in Figure 1. To
generate a valid executable file, we link both object files: the target
we modified and the file containing our injected code.

2.2 Return-Path Instrumentation

So far, we injected code into the call path (left half of Figure 1).
To be able to inject code into the return path too, we ensure that
the Harzer Roller catches all return paths. For example, it is not
uncommon to have a function check its input at the beginning and
return early when it detects invalid input. These return statements
do not necessarily need to be in the same basic block. Therefore,
any function can have any finite number of return points. In our
method, we rely on the fact that some instructions on a micropro-
cessor are not valid and guaranteed to cause an exception, which
may be handled by an exception handler. We can use this to craft a
special return address that will generate such an illegal instruction
exception and continue to do so even if that return address is par-
tially overwritten (e.g. by placing the target address into unmapped
memory, which usually generates an exception when jumped to).
We use the call-path instrumentation described in the previous
section to modify the link register within the injected wrapper
function before control is passed to the instrumented function. As
depicted in Figure 1, we overwrite the contents of the link register
with a special canary value, that is chosen in a way to guarantee an
invalid instruction exception to occur when jumped (or returned)
to. As depicted with a red arrow in Figure 1, this shifts execution
flow from the direct return into the exception instrumentation path.
Since we are able to inject code before the execution flow shifts to
the called function and also on every return path, we can now trans-
parently modify input to the function and validate the functions
output and/or rewrite it. To pass control flow back to the function
that called our Harzer Roller instrumented function, we need to
restore the state of execution. This mandates two requirements:
first, all instrumentation in the return path must not overwrite
any registers containing return values, callee-saved registers or
stack contents still in use. Second, because the link register gets
overwritten to be able to hook this return path, we need to restore

ROOTS ’19, November 28-29, 2019, Vienna, Austria

the address that the return should jump to. We do this by saving
the link register to a memory region not used by either stack or
heap before overwriting it. We call this structure return stack as it is
a FIFO queue of saved return addresses. Depending on the concrete
instrumentation done in this step, we could also save additional
metadata to this structure that is only known upon call, but needed
in the return path. An example of such data would be the name of
the called function.

In the following section, we provide a proof of concept imple-
mentation of the Harzer Roller. While it is targeted at a specific
platform, our method is generally applicable to other platforms as
well.

3 IMPLEMENTATION ON THE ESP8266

For a showcase implementation of our concept we chose Espressifs
ESP8266 chip as a platform. Its MIT-licensed [11] SDK, which is
available online [12], contains numerous BLOBs to dissect. Specifi-
cally, we ran our experiments with firmware built on top of version
3.0 (2f9e@bb) of the ESP8266 NONOS SDK.

The ESP8266 is based on the Tensilica xtensa ISA family [19].
As the ISA is highly customizable, it can be configured with or
without certain features like MMU, JTAG or various DSPs. The
exact configuration of the architecture for the ESP8266 processor is
unknown, however the general consensus seems to be that very few
features above the base package are included; especially no JTAG
or MMU features [7]. We first describe our implementation for call
path instrumentation and function wrapping. We then elaborate on
how to obtain the exception table on the ESP8266. We require this
table for the instrumentation of the return path, which we describe
subsequently.

3.1 Call Path Instrumentation and Function
Wrapping

Because only limited space is available on the SPI flash chips sup-

ported by the ESP8266 SDK, we must take care to keep the overhead

of function wrapping as low as possible. In the xtensa ISA, we do

this by taking advantage of the narrow-encoded instructions, like

addi.n, which only take up two instead of three bytes.

We also observe that only a small portion of the actual wrap-
ping code depends on the function that is called. We can thus save
additional space by separating the wrapper code into an indepen-
dent part that we only put once in the resulting firmware file and
by generating as less instructions as possible for each wrapped
function. Of course, the resulting size depends on the functionality
that should be achieved with the instrumentation, however we
assume that most of this size cost can be located in the function
independent part of the handler.

As the Harzer Roller injects itself into function calls, it must
be completely transparent to the caller and the callee (with the
obvious exception being the return address); in particular once the
return address is saved, the stack pointer and all registers except
a0 - the link register of xtensa — must be the same as without
instrumentation. This requires space in memory to perform these
operations. We solve this problem by allocating a temporary stack
frame to save all used callee-save registers.

ROOTS ’19, November 28-29, 2019, Vienna, Austria

Still, we need one caller-save register to hold the address of the
wrapped function. We chose a15 as this is inherently a caller-save
register. Therefore, it can be modified freely by the called function,
which is guaranteed not to depend on this register.

The second part of the wrapping code is relatively straight for-
ward: we save the actual return address and the associated informa-
tion to the current cell of the return stack, increase the pointer to
the return stack, restore the registers al to a3 and jump to the called
function. We set a0 to the canary value, in our case @xdeaddead.
While the exact value of the canary is not important, we need to
choose it in a way such that we can guarantee that it reliably gen-
erates an exception. We settled on this particular value because it
has the added benefit of being very easy to spot in a debugger or
memory dump and rather unlikely to be incidentally encountered.

3.2 Registering the Exception Handler

To make use of the return-path instrumentation, we need to reg-
ister our own exception handler for illegal instruction exceptions.
Unfortunately, there is no documented way of doing this with an
API function of the SDK and neither the SDK API Reference [20]
nor the architecture manual [8] specify the mechanism by which
exceptions are actually handled in the ESP8266 core. However, the
ISA manual specifies that any implementation of the exception
option needs to specify a user, kernel and double exception vector.
Fortunately, these vectors are specified in the default linker script
for the platform [17] as 9x40000030 for the kernel and 0x40000050
for the user vector, respectively.

From the memory map [6], we deduct that this location is in the
processor’s internal ROM which cannot be written to. Any code
that resides in this ROM is the same across all ESP8266 devices
with the same revision. Unfortunately, the license of this code is
not clear - for legal reasons we therefore assumed it to be closed
source and applied black-box testing.

Dumping and examining the ETS system RAM revealed an array
of function pointers at @0x3fffc000, which turned out to be the ker-
nel exception handler tables. Each entry of that table corresponds
to one exception of the kernel exception class. The index of the
table refers to the cause of the exception as described in the ISA
manual.

Using this information, we overwrite the first entry of the ex-
ception table (the I1legalInstructionCause) with our custom
exception handler function, thus ensuring execution of the Harzer
Roller exception path (see illegal_instruction in Figure 1).

To be able to make use of the return path instrumentation, we
need to ensure that our custom handler is registered before the
first return of a protected function happens. Depending on which
functions in the built firmware are instrumented, we searched for
a way to move the hooking code to a different function for dif-
ferent firmware builds. This problem is similar to what led to the
introduction of so-called Master Codes [14] in cheat devices like
Datels Action Replay v3 for the GameBoy Advance. In essence,
their system allowed end users to overwrite values in the games
memory, thereby altering values like health or experience gained.
To overwrite these values, a routine in the cheat modules ROM was
used. The game-specific master code was then used to dynamically
patch the original game’s ROM to inject a jump to the cheat routine

Katharina Bogad and Manuel Huber

rsr.epcl a3 1
L32R a2, 2
SUB a2, a2, a3 3
BEQZ a2, 4
L32R a0, 5
ADDIN a0, a0, -—-12 6
L32I.N a2, a0, 0 7
L32R a0, 8
callx0 a0 9

: 10
L32R a0, 11
ADDIN a0, a0, -12 12
L32R al5, 13
ADDIN al5, al5, 4 14
$32I.N a0, al5, 0 15
L32I.N al5, a0, 12 16
L32I.N a0, a0, 8 17
L32I.N a2, al, 20 18
L32I.N a3, al, 24 19
L32I.N a4, al, 28 20
ADDIN al, al, 256 21
wsr.epcl a0 22
rfe 23

Figure 2: Implementation of our illegal instruction excep-
tion handler in xtensa assembler.

every few frames. Similar in spirit, our implementation allows the
specification of a master function which will be hooked with the
exception handler installation routine. For simplicity, we use the
same hooking idea like in the call path instrumentation.

3.3 Return Path Instrumentation

As described in Section 2, each time a Harzer Roller-instrumented
function returns, the processor generates an illegal instruction ex-
ception (see Figure 1). In this part, we describe how we handle these
illegal instruction exceptions and outline a sample implementation
of a stack corruption detection with Figure 2.

On the xtensa architecture, the address which triggered the ex-
ception is stored in a special register. We load this address and
compare it to the Harzer Roller canary which we store in a fixed
location in RAM. We only use the caller-saved registers a2 to a4 as
these are saved on the stack by the calling function and can thus
be utilized without affecting further execution. This is reflected in
lines 2-4 of Figure 2.

If the canary check fails, we do not return from the exception
and may hence freely utilize any register. Because an overflow
must have happened, those values are considered to be invalid in
any case. As with traditional stack canaries, we invoke a special
function stack_chk_fail, which handles the abort and dumping
of the execution state (lines 5 to 8 in Figure 2). As this function is
part of our instrumentation implementation, we chose a human-
readable format that dumps all registers (except a@, which cannot
be recovered), and roughly 384 bytes of stack around the current
stack address (a1).

Harzer Roller

ROOTS ’19, November 28-29, 2019, Vienna, Austria

void ICACHE_FLASH_ATTR
shell_tcp_recvceb(void «~arg, char =«
pusrdata , unsigned short length)

DN =

{

3
4 struct espconn xpespconn =
5 (struct espconn «) arg;
6 char xorbuf[20];

7 char *X]

8

9

ets_memcpy (xorbuf, pusrdata, length);

(0x3ffe8070) a0=0x40229fb5 al5=0x3ffef500 | 1
name="'tcpserver_connectcb ' sp=3

ffffd74
tcp connection established 2
(0x3ffe8070) a0=0x40222a974 al5=0x0 name="'| 3

shell tcp_recvceb ' sp=3ffffd84

Figure 3: Excerpt of a vulnerable test program.

In the good and usually executed path (starting from line 10), we
restore all registers to their saved values. Subsequently, we ensure
that the Harzer Roller is transparent to the instrumented software.
We load registers a2 to a4 from the stack. We store register ao,
the new return address, on the topmost cell(s) of our return stack.
We adjust the stack pointer in a1 to al + 0x100 in order to restore
the stack frame of the function. Finally, we overwrite the special
register containing the fault return address with the valid return
address we saved when calling the instrumented function.

We now explore two possible applications of the linker instru-
mentation: execution tracing and detection of memory corruption.

4 EVALUATION

In this section we evaluate the Harzer Roller using the example
implementation presented in Section 3. Specifically, we demonstrate
that execution flow tracing and crash dump information extraction
can be achieved using our method. Additionally, we investigate
the implications of the Harzer Roller regarding size increase of the
resulting binary and execution time. Finally, we showcase a fuzzing
setup that relies on the Harzer Roller to collect crash information
of a fuzzed ESP8266 device.

For our tests, we implemented a simple xor-as-a-service test
program, where anything that retrieved is byte-wise XORed with
0x42 and then sent back. It contains a stack-based buffer overflow
vulnerability (see Figure 3) to simulate a real-world scenario in
which an attacker gains control of the device by overwriting the
saved return address on the stack. We then compiled this program
using our call- and return path instrumentation.

4.1 Execution Tracing

We utilized the call path instrumentation of the Harzer Roller to
insert a dump function into every indirect function call of the object
file that was compiled from our test code. This dump function has
the full program state at the time of the call available. Because any
call to (UART) printf-functions that can print state information
would clobber any used registers, we took care to fully save (and
restore) the contents of all registers. However, this is a necessity
specific to the xtensa architecture, as its calling convention does
not make use of any callee-save registers. Still, the needed stack
space for these operations may limit the applicability of our dump

Figure 4: Sample output of the call instrumentation of our
test program. The first address is the current location of the
topmost entry of the return stack used in return-path instru-
mentation.

s+ STACK SMASH DETECTED « « = 1

returning from function shell_tcp_recvchb 2

halting execution. pc=23232328, canary= 3
deaddead

Register state: 5

a0 =(unk) a4=00000000 a8 6
=00000000 al2=00000000

al=3ffffdoo a5=00000000 a9 7
=00000000 al3=23232323

a2=000002do a6=00000008 alo 8
=00000000 al4=23232323

a3=00000000 a7=46464646 all 9
=00000000 al5=40217868

10

stack dump at 3ffffdoo: 11

0x3ffffdoo: 00 00 00 00 23 23 23 23 00 12
00 00 00 98 fc ff 3f

13

0x3ffffd50: 23 23 23 23 23 23 23 23 a9 14
02 00 00 00 79 21 40

0x3ffffd60: 23 23 23 23 23 23 23 23 23 15
23 23 23 23 23 23 23

0x3ffffd70: 23 23 23 23 23 23 23 23 23 16
23 23 23 23 23 23 23

0x3ffffdgo: 23 23 23 23 23 23 23 23 23 17
23 23 23 23 23 23 23

0x3ffffd9o: 23 23 23 23 23 23 23 23 23 18
23 23 23 23 23 23 23

19

Figure 5: Example of crash dump information that can be
extracted using the Harzer Roller.

function. Under tight memory constraints, e.g. when handling non-
trivial recursion, our injected code could lower the limit of the
maximum possible recursion count. For an example of the output
of our test program, see lines 1 and 3 of Figure 4. We use this
information to track values across functions and non-public API
endpoints. This enables us to have a better understanding of the
inner workings of the SDK besides the public reference documents.

ROOTS ’19, November 28-29, 2019, Vienna, Austria

4.2 Crash Dump Information

We also utilized the return-path instrumentation to collect crash
dump information if the saved return address does not match our
canary value. As pictured in Figure 5, we are able to recover and
print all registers (except a@) and the stack frame of the faulty
function. We triggered this dump by exploiting the test vulnerability
through sending a large amount of a characters. We see that the
stack pointer at the time of failure points to @x3ffffd90, and from
the generated assembly we can deduce that our initial, overflown
buffer, was located at @x3ffffd60. The return address was saved to
ox3ffffd8c and was overwritten. Because we saved the function
name that was called to a stack structure during a function call
using our call-path instrumentation, we can identify the function
that contained the fault.

4.3 Binary Size and Performance Overhead

There is a non-trivial size increase when using the Harzer Roller;
making complete instrumentation of all SDK functions in real-
world applications not practical. However, the size increase varies
greatly between the different libraries (see Figure 6), so it is pos-
sible to choose exactly those of interest. Generally, a higher size
increase is directly related to better code coverage of the instrumen-
tation. The best coverage can be achieved when compiling with
gees -ffunction-sections argument as each function is placed
into its own section, thus retaining a symbol name that can be
instrumented. In this scenario library-internal functions that are
not part of any exposed API can be fuzzed as well.

A special case considering size increases is 1ibgcc. a. Although
this library is relatively big (about 73 KiB), it’s size increase is only
4, 87%, making it the library with the smallest size increase. This is
due to the library mostly containing softmath library code which
will not be instrumented at all.

Even with optimizations and hand-written assembly using nar-
row instruction encodings to reduce the size of the wrapping code,
the introduced overhead is still large for embedded systems and
especially the ESP8266. Currently, the SDK of our example plat-
form supports only up to 16 Mbit SPI flash chips which is not large
enough to instrument all SDK functions in a given application
firmware at once.

As a result, we can only instrument parts of the firmware at
one time when fuzzing, for instance. We automate the instrumenta-
tion process, automating the unpacking of the contents of a given
archive (if necessary), renaming the symbols in the object files, and
generating wrappers as described, compiling them and re-packing
everything to an archive that can be used for linking. All this can
be configured either in the projects Makefile or via environment
variables for great flexibility.

The execution time overhead is not tied to the size increase in
any form, as the size increase stems mainly from the addition of
function-dependent hooks that get added to the archive. Instead,
the overhead scales with the amount of code that is used in the
instrumentation. In our case, the biggest time sink was the printing
to UART using a rather low baud rate, which was fine for our test
application. However, when instrumenting time-critical code in
future work we need to be careful as to not break timings on e.g.
the physical 802.11 layer.

Katharina Bogad and Manuel Huber

liblwip.a |] -
libjson.a -] =
libhal.a |
libgcc.a [0 =
libespnow.a | H
libdriver.a | I
liberyptoa] =
libc.a {1 B

libata] =
libairkissa [1] =
libwpsa] -
libwpa2a] -
libwpaa] -
libupgrade.a] I
libssla 1] -
libsmartconfiga [] =
libpwm.a -] =
ibpp.a |] =
libphy.a | =
libnet80211.a {— 1] -
libmbedtls.a |
libmain.a -
liblwip_536.a -] =

! ! !
0 50 100 150

Figure 6: Increases in size in percentage of libraries instru-
mented with the Harzer Roller.

4.4 Fuzzing Setup

In general, there are three modes of operation supported by the
ESP8266: Access Point, Station and Mesh. For our tests, we wanted
to mimic a typical household IoT-Scenario. We deployed a common
off the shelf router running OpenWRT to which the target ESP8266
in station mode connects. We connected the host device, a desktop
computer, running the fuzzer via a standard ethernet connection to
the router. The whole setup is depicted in Figure 7.

Our fuzzer is based on BooFuzz [5], a popular python layer 2/3
protocol-based modelling fuzzer. BooFuzz is capable of fuzzing
various protocols of the ESP8266’s network stack. For our testing
purposes and to show the effectiveness of the Harzer Roller, we
built a sample vulnerable binary outlined in Figure 3. This binary
contains a vulnerability that must be found while fuzzing with the
Harzer Roller.

We used our return-path instrumenting to print crash output
and memory dumps from the ESP8266 to the UART serial connec-
tion. For efficient fault capturing, we need to capture the dumped
information. Additionally, we must ensure that we can reboot the
ESP8266 from every state, even if it is completely hung up, without
human interaction (e.g., pulling the power cable).

To address both problems, we used a target device controller
board, in our setup a sparkfun ESP32thing, that captures the UART
output of the ESP8266 and forwards it to its own serial connection
with the host computer. Additionally, this board may reset the
ESP8266 on command by pulling its RST pin to GND. The controller
board also provides power to the ESP8266.

To aid debugging of the whole setup, we multiplex the serial
connection of the ESP32 to n network connections to provide an

Harzer Roller

E Isolated Network

= .. [\

E—— LAN

Crash DB

Sevvaed

ROOTS ’19, November 28-29, 2019, Vienna, Austria

<« H()

UART W

Device Controller Target Device

Figure 7: A schematic drawing of our fuzzing setup.

easy to use back-channel to the fuzzer while being able to monitor
the serial output independently.

4.5 Practical Attacks on the ESP8266

For the following, we categorize our efforts in two categories: First,
we sketch a method to achieve chosen payload execution, second,
we discuss how we approach a permanent denial of service attack.

Identifying exploitable vulnerabilities in ESP8266 firmware might
quickly lead to severe consequences. Code execution can be gained
either by a traditional buffer-overflow based attack, whether on
the stack, the heap or in a structure in a R/W mapped data section.
Additionally, the ESP8266 provides an easy-to-use firmware mecha-
nism. However, there is absolutely no protection against corrupting
the ESP8266’s firmware; even the download has to be done via
unencrypted HTTP as HTTPS is not supported. Each firmware
contains a 16 bit integer describing a version number. The new,
downloaded firmware that is to be flashed onto the flash memory
is then checked if its version number is greater than the one that is
currently booted. If so, the download continues and the flash gets
overwritten with whatever is presented to the update mechanism.
Obviously, setting the version number to 216 — 1 disables the up-
date mechanism until the device is retrieved and manually flashed
via a UART download. We can also achieve the latter by directly
overwriting the version field present in the SPI flash, bypassing the
update mechanism.

Another method to permanently put an ESP8266 out of order is
by physically destroy the flash chip by repeatedly read and write
single flash cells in the image header region, thus hindering boot.
Templeman and Kapadia introduced GANGRENE [21] that shows
the feasibility of such an attack.

5 DISCUSSION

In the following we discuss important aspects and limitations of
our method in general as well as specifics of our implementation.
The recoverability of an attack of the ESP8266s firmware greatly
depends on the specific deployment of the device. In home IoT
settings it is hardly imaginable that such a device would be user-
serviceable given the current lax standards regarding (security)
updates in consumer devices in the first place. In a more professional
environment it is possible to re-flash a fixed version of the firmware
manually to alimited amount of devices provided the OEM designed
the specific application in a way a UART download flash is possible.
To go to extreme lengths, devices could also be recovered by just
swapping out the SPI flash chip with a known good one; albeit that
this would involve some soldering. However, in a mesh network

with a large number of deployed devices, recovering them most
likely is not an option if, for example, the exact location of the
devices is unknown due to aerial deployment.

While we managed to achieve our goal providing more and
clearer output at the point of failure, our method obviously has a
few limitations. First and foremost, while we provide a valuable
tool for fuzzing, the Harzer Roller is not designed to be a security
feature. It relies on the fact that the return of a function generates
an exception that we can catch. An attacker would simply be able
to overwrite the saved return pointer on the stack and gain control
of the execution flow, completely bypassing the Harzer Roller.

It is unlikely although possible that automated software testing
overwrites the saved return address in a way no exception gets
triggered, which would corrupt the return stack on subsequent
calls. This also holds true for accidentally writing the canary value
to the saved return address when in fact an overwrite did happen.
Such an access would not be detectable by our implementation of
the return address checker.

Obviously there is also no generic function for dumping memory
contents in the case of failure. Even with limited amounts of RAM
the address space is only sparsely mapped, so the dumping function
needs to be aware of the target chips memory map. In some cases,
it may be even specific to the SDK used for development of the
chip firmware, as information about e.g., the heap usage could be
directly displayed in the dump. Still, this enables researchers to
more easily obtain information about a chips internal state even
when no debug interfaces like JTAG are available.

Recently, IoT devices with multiple cores appeared on the mar-
ket. While our example implementation is tied to the single-core
ESP8266 board, our method is applicable to systems employing par-
allel execution as well. For the call-path instrumentation nothing
needs to be changed. The return-path instrumentation hook how-
ever needs to maintain a distinct return stack for each execution
strain (usually each core).

As it is the case with the ESP8266, oftentimes storage size restric-
tions prevent instrumenting of the whole instrumented firmware
due to the added overhead. While SPI flash memory is cheaply
available online, not every board supports memory-mapping SPI
flash chips of arbitrary size. A workaround to this may be to employ
some kind of bank-switching scheme where the firmware switches
between SPI chips at runtime. The feasibility of this, especially
considering interrupt handling routines, remains to be researched
in future work.

In some scenarios, e.g., smart door locks or industrial applica-
tions, it might be needed to connect actuators to the chip that are

ROOTS ’19, November 28-29, 2019, Vienna, Austria

not easily moved. Our setup allows to easily separate the fuzzer
host and the fuzzed board, making fuzzing easier while the device
is deployed.

6 RELATED WORK

In this section we cover related work in embedded (static) binary
instrumentation and software testing.

Muench, et al. [13] pointed out that memory corruptions in
embedded devices oftentimes result in different behavior than in
desktop systems. The ESP8266, according to their paper, is a Type III
device, with a single monolithic firmware model and no OS. Muench
et al. observed no visible crashes (or reboots) while probing their
Type III device. The Harzer Roller aims to improve this situation
through e.g. our stack overflow detection as described in Section 3.

Thomas’ LIEF project [22] is like the Harzer Roller a framework
to instrument binary files. It handles substantially more formats
than our work, but is mainly designed for systems that have an OS
(Type I or Type Il according to [13]). While it can rewrite parts of
an ELF file, we found this capability rather unstable on uncommon
architectures like xtensa. Because LIEF only handles files in a com-
monly known executable format, it cannot process flat firmware
images for development boards out of the box. As is the case with
the Harzer Roller, LIEF therefore is only applicable before linking
as libraries in the ESP8266s SDK are provided in ELF format. In
particular, we used the symbol parsing part of LIEF for the Harzer
Roller.

Corteggiani, Camurati and Francillon [2] introduce Inception, a
framework for symbolic execution of embedded systems software.
While able to operate on binaries without available source code, it
still requires a JTAG port present on the target device. Avoiding
this was an explicit design goal of the Harzer Roller.

Song et al. [16] published PeriScope, a probing and fuzzing frame-
work for the hardware-OS boundary. While interested in a related
target, network stacks, their approach relies on the presence of a
MMU to intercept memory access. Because on many embedded sys-
tems no memory management is available, we designed the Harzer
Roller in a way that works without one. However, this limits the
effectiveness of our method compared to PeriScope.

7 CONCLUSION

Motivated by the rapidly growing distribution of heavily intercon-
nected embedded devices, we proposed the Harzer Roller, a method
for embedded firmware testing. The Harzer Roller is especially
useful for security testing of IoT deployments using closed-source
firmware components, which can potentially introduce fatal vul-
nerabilities. With the Harzer Roller, we hook the control flow of
firmware on calls and returns to and from subroutines. This allows
us fine-grained insight to code execution flow and to detect stack
overflows. While keeping the design of the Harzer Roller indepen-
dent of embedded architectures, we implemented a prototype for
the xtensa architecture. Our instrumentation method for libraries
from any archive is ELF specific, but generally architecturally inde-
pendent. We evaluated the usefulness at the example of the ESP8266
Wi-Fi chip, showcasing the tracing of execution flows and the detec-
tion of stack-based buffer overflows. The Harzer Roller can easily
be ported to different chips and architectures, as long as exception

Katharina Bogad and Manuel Huber

handling is available. Depending on the architecture specifics, the
overhead may be significantly less or more than what was observed
on the ESP8266 platform. Furthermore, our setup for the ESP8266
can easily be adapted for various other embedded scenarios and be
used for wireless protocol fuzzing such as bluetooth or Wi-Fi pro-
tocol implementations. We aim to open source our implementation
shortly after the publication of the paper.

REFERENCES

[1] Winbond Electronics Corporation. 2015. Winbond W25Q128FV Datasheet. https:
//www.winbond.com/resource-files/w25q128fv%20rev.1%2008242015.pdf

[2] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. 2018. Inception:
System-Wide Security Testing of Real-World Embedded Systems Software. In
27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD, 309-326. https://www.usenix.org/conference/usenixsecurity18/
presentation/corteggiani

[3] dgtlrift. 2016. Patch: QEMU simulation of ESP8266 prior to flashing. https:
//github.com/SuperHouse/esp-open-rtos/issues/230

[4] Matheus Eduardo. 2019. Proof of Concept of ESP32/8266 Wi-Fi vulnerabil-
ties (CVE-2019-12586, CVE-2019-12587, CVE-2019-12588). https://github.com/
Matheus-Garbelini/esp32_esp8266_attacks

[5] Joshua Pereyda et.al. [n. d.]. BooFuzz Source Code repository. https://github.
com/jtpereyda/boofuzz

[6] Max Filippov et.al. 2015. esp8266 Memory Map. https://github.com/esp8266/
esp8266-wiki/wiki/Memory-Map

[7] Max Filippov. 2015. esp8266 processor feature config. https://github.com/
jemvbkbe/crosstool-NG/blob/xtensa- 1.22.x/overlays/xtensa_lx106.tar#L16085

[8] Tensilica Inc. 2019. Xtensa® Instruction Set Architecture (ISA) Reference Manual.
https://0x04.net/~mwk/doc/xtensa.pdf

[9] Markus Kammerstetter, Christian Platzer, and Wolfgang Kastner. 2014. Prospect:

Peripheral Proxying Supported Embedded Code Testing. In Proceedings of the 9th

ACM Symposium on Information, Computer and Communications Security (ASIA

CCS ’14). ACM, New York, NY, USA, 329-340. https://doi.org/10.1145/2590296.

2590301

C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. 2017. DDoS in the IoT: Mirai

and Other Botnets. Computer 50, 7 (2017), 80-84. https://doi.org/10.1109/MC.

2017.201

[11] Espressif Systems CO. LTD. 2017. Espressif MIT Li-

cense. https://github.com/espressif/ESP8266_NONOS_SDK/blob/

90c641efe84066b47c4616ed367697a9f49f3ac5/License

Espressif Systems CO. LTD. 2019. ESP8266 NONOS SDK Source Code. https:

//github.com/espressif/ESP8266_NONOS_SDK

[13] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide

Balzarotti. 2018. What you corrupt is not what you crash: Challenges in fuzzing

embedded devices. In NDSS 2018, Network and Distributed Systems Security Sym-

posium, 18-21 February 2018, San Diego, CA, USA. San Diego, UNITED STATES.

http://www.eurecom.fr/publication/5417

Kong K Rool, Macrox, Tolos, DGenerateKane, HyperHacker, Viper187, and Kenobi.

2004. The Secrets of Professional Gameshark(tm) Hacking. https://macrox.gshi.

org/The%20Hacking%20Text.htm#gba_non_standard_master

Paul Sokolovsky. 2019. ESP Open SDK. https://github.com/pfalcon/esp-open-sdk

Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn

Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael

Franz. 2019. PeriScope: An Effective Probing and Fuzzing Framework for the

Hardware-OS Boundary. In Proceedings of the Network and Distributed System

Security Symposium (NDSS 2019). San Diego, CA.

[17] Espressif systems CO. LTD. 2017. esp8266 ROM addresses: Exception Vec-

tors. https://github.com/espressif/ESP8266_NONOS_SDK/blob/release/v3.0.

0/1d/eagle.rom.addr.v6.1d#L45

Espressif systems CO. LTD. 2017. Espressif Achieves 100 Million Target in

IoT Chip Shipments. https://www.espressif.com/en/media_overview/news/

espressif-achieves-100- million- target- iot- chip-shipments

Espressif systems CO. LTD. 2019. ESP8266 Datasheet. https://www.espressif.

com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf

Espressif systems CO. LTD. 2019. ESP8266 Non-OS SDK API Refer-

ence. https://www.espressif.com/sites/default/files/documentation/2c- esp8266_

non_os_sdk_api_reference_en.pdf

Robert Templeman and Apu Kapadia. 2012. GANGRENE: Exploring the Mortality

of Flash Memory. In Presented as part of the 7th USENIX Workshop on Hot Topics in

Security. USENIX, Bellevue, WA. https://www.usenix.org/conference/hotsec12/

workshop-program/presentation/Templeman

Romain Thomas. 2017. LIEF - Library to Instrument Executable Formats.

https://lief.quarkslab.com/.

[10

[12

(14

jengreny
S

oy
&

[19

[20

[21

[22

https://www.winbond.com/resource-files/w25q128fv%20rev.l%2008242015.pdf
https://www.winbond.com/resource-files/w25q128fv%20rev.l%2008242015.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://github.com/SuperHouse/esp-open-rtos/issues/230
https://github.com/SuperHouse/esp-open-rtos/issues/230
https://github.com/Matheus-Garbelini/esp32_esp8266_attacks
https://github.com/Matheus-Garbelini/esp32_esp8266_attacks
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://github.com/esp8266/esp8266-wiki/wiki/Memory-Map
https://github.com/esp8266/esp8266-wiki/wiki/Memory-Map
https://github.com/jcmvbkbc/crosstool-NG/blob/xtensa-1.22.x/overlays/xtensa_lx106.tar#L16085
https://github.com/jcmvbkbc/crosstool-NG/blob/xtensa-1.22.x/overlays/xtensa_lx106.tar#L16085
https://0x04.net/~mwk/doc/xtensa.pdf
https://doi.org/10.1145/2590296.2590301
https://doi.org/10.1145/2590296.2590301
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1109/MC.2017.201
https://github.com/espressif/ESP8266_NONOS_SDK/blob/90c641efe84066b47c4616ed367697a9f49f3ac5/License
https://github.com/espressif/ESP8266_NONOS_SDK/blob/90c641efe84066b47c4616ed367697a9f49f3ac5/License
https://github.com/espressif/ESP8266_NONOS_SDK
https://github.com/espressif/ESP8266_NONOS_SDK
http://www.eurecom.fr/publication/5417
https://macrox.gshi.org/The%20Hacking%20Text.htm#gba_non_standard_master
https://macrox.gshi.org/The%20Hacking%20Text.htm#gba_non_standard_master
https://github.com/pfalcon/esp-open-sdk
https://github.com/espressif/ESP8266_NONOS_SDK/blob/release/v3.0.0/ld/eagle.rom.addr.v6.ld#L45
https://github.com/espressif/ESP8266_NONOS_SDK/blob/release/v3.0.0/ld/eagle.rom.addr.v6.ld#L45
https://www.espressif.com/en/media_overview/news/espressif-achieves-100-million-target-iot-chip-shipments
https://www.espressif.com/en/media_overview/news/espressif-achieves-100-million-target-iot-chip-shipments
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/2c-esp8266_non_os_sdk_api_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/2c-esp8266_non_os_sdk_api_reference_en.pdf
https://www.usenix.org/conference/hotsec12/workshop-program/presentation/Templeman
https://www.usenix.org/conference/hotsec12/workshop-program/presentation/Templeman

	Abstract
	1 Introduction
	2 Linker-based Instrumentation
	2.1 Call-Path Instrumentation
	2.2 Return-Path Instrumentation

	3 Implementation on the ESP8266
	3.1 Call Path Instrumentation and Function Wrapping
	3.2 Registering the Exception Handler
	3.3 Return Path Instrumentation

	4 Evaluation
	4.1 Execution Tracing
	4.2 Crash Dump Information
	4.3 Binary Size and Performance Overhead
	4.4 Fuzzing Setup
	4.5 Practical Attacks on the ESP8266

	5 Discussion
	6 Related Work
	7 Conclusion
	References

