
identity x
securing the insecure

a study of emerging IDENTITY X.0 protocols

khash kiani
khash@thinksec.com

mailto:hash@thinksec.com
mailto:hash@thinksec.com

what you should remember?

 1. protocols with very good intentions
	

 2. it’s the implementation, not the protocol

	

 roadmap
‣ identity X.0
‣ OAuth flow
‣ malicious OAuth applications
‣ insecure OAuth implementation
‣ OpenID intro
‣ how i owned my friend’s ID
‣ insecurities with OpenID
‣ summary

next-generation identity
‘optimize your online experience’

what is identity?

who you are

Khash Kiani

where you live

what you do

things you like

reputation

‣ communication
‣email address
‣phone number

‣ ownership
‣media files
‣documents

‣ authentication
‣ authorization

 roadmap
‣ identity X.0
‣ OAuth flow
‣ malicious OAuth applications
‣ insecure OAuth implementation
‣ OpenID intro
‣ how i owned my friend’s ID
‣ insecurities with OpenID
‣ summary

what’s OAuth?

user-centric scheme
user controls authorization

user

AIG
Token

FM
Token

Twitter
Token

Twitter
Token

actors:
resource owner (user)
resource consumer (client)
resource provider (server)

tokens:
consumer credentials
request token
access token
refresh token

terminology

use case

Twitter
Token

resource owner - user

resource provider - server

resource consumer - client

authorization flow

 1. client app authentication
	

 2. get request token: POST oauth/request_token
	

 3. authenticate user: GET oauth/authorize
	

 4. get access token: POST oauth/access_token
	

 roadmap
‣ identity X.0
‣ OAuth flow
‣ malicious OAuth applications
‣ insecure OAuth implementation
‣ OpenID intro
‣ how i owned my friend’s ID
‣ insecurities with OpenID
‣ summary

building malicious OAuth clients
(native and web apps)

password theft with Google client
(a native iOS OAuth client)

OAuthSampleTouch mobile Google app
(connects to Google reader account)

 modify the UIWebViewDelegate’s:
webView:shouldStartLoadWithRequest:navigationType

- callback method to intercept the login page prior to sending the post request
- no proper browser control like same-origin-policy

output the Google credentials

“but it looked so official!”

OAuth provides the user with a false sense
of safety in the authentication workflow

recommendations
(mobile apps)

‣ client application developers: keep authentication
 outside the app and inside the browser

‣ users: do not trust clients that do not use a trusted
 neutral application such as safari to manage server auth

‣ protocol designers: stricter policies around
 authenticating clients to server. better browser API support

fortune telling facebook client
(a 3rd party browser-based web client)

 a social engineering OAuth client to establish user trust

lure the victim to use your app
domain apps.facebook.com is trustworthy!

phish

easy!

https://apps.facebook.com/redevilfortune/

access
scope

https://apps.facebook.com/redevilfortune/
https://apps.facebook.com/redevilfortune/

70%
* source: core impact client-side phishing campaign

read the
inbox

messages

query private user messages

link to execute
ajax post and
carry our CSRF

build the trap to aid exploitation

!

assumptions

‣ victim has an active session with his banking site
‣ no CSRF protection by banking site

“but it looked so official!”

OAuth provides the user with a false sense
of safety in the authentication workflow

Dear Facebook,
what is the business need for a web

application to read my private messages?

 roadmap
‣ identity X.0
‣ OAuth flow
‣ malicious OAuth applications
‣ insecure OAuth implementation
‣ OpenID intro
‣ how i owned my friend’s ID
‣ insecurities with OpenID
‣ summary

insecure implementation

flawed session management

 Avon selects twitterfeed to publish something

- Avon is redirected to twitter’s authorization endpoint
- Avon enters his twitter credentials and grants access

- Avon is redirected back to complete the feed
- Avon signs out of twitterfeed and walks away

what about his twitter
session?

 risks

‣ unattended session
‣ no session timeout
‣ user remains logged in

what can go wrong?

problem, meet solution

‣ invalidate server session
‣ short-lived access token
‣ no auto-processing

a better approach

can you really change
your password?

change password = old access token still works!

solution

‣ ensure compromised credentials cannot be used
‣ revoke tokens upon password changes

 - results from facebook access token leakage to 3rd party apps

insecure storage of secrets
(consumer/client credentials)

1.	
 	
 	
 public	
 class	
 TwitterClient	
 {	
 	

2.	
 	
 	
 	
 	
 	
 	

3.	
 	
 	
 	
 	
 	
 	
 private	
 static	
 String	
 key	
 =	
 "qSkJuxxxxxxxx76A";	
 	

4.	
 	
 	
 	
 	
 	
 	
 private	
 static	
 String	
 secret	
 =	
 "Bs738xxxxxxxxxxxxxxZe9EhXw";
	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ,,,,,,,,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	

8.	
 	
 	
 	
 	
 	
 	
 Twitter	
 twitter	
 =	
 TwitterFactory().getInstance();
9.	
 	
 	
 	
 	
 	
 	
 	
 twitter.setOAuthConsumer(key,	
 secret);

server-side

‣ isolate the credentials
‣ protect the integrity

native clients

‣ native mobile app
‣ desktop apps

“So forget about using the consumer credentials for anything
other than somewhat reliable statistics.”

 - e. hammer lahav

how about these use cases:

‣ fulfill specific business requirements
- server must keep track of all clients
- provisioning

‣ prevent phishing attacks

popular implementations
 (installed mobile apps)

 1. omit the client credentials entirely
 2. embed in the client app itself

threat
 (with embedded client credentials)

‣ compromised credentials

open source clients

‣ source code
‣ resource bundle

the not so secret consumer secrets

closed source clients

‣ binary extraction on android oauth client:
‣ astro file mgr to copy the client app
‣ poke around
‣ classes.dex
‣ “dexdump classes.dex

compromised credentials

impact:

‣ key rotation and kill switch
‣ not meeting business requirements
‣ anonymous publication by competition
‣ susceptible to phishing attacks

alternative approach

‣ automated provisioning to establish trust

alternate flow
(installed mobile apps)

‣ authenticate user to client’s web server
‣ call home to get device id
‣ store device id locally
‣ proceed with oauth flow to get request token
‣ validate device id to authenticate client
‣ proceed with the flow to grant access token

alternate flow
(mobile apps)

alternate flow
(mobile apps)

alternate flow
(mobile apps)

alternate flow
(mobile apps)

alternate flow
(mobile apps)

alternate flow
(mobile apps)

alternate flow
(mobile apps)

OAuth take-aways:

- defeating password anti-pattern

- installed apps cannot hold on to
 secrets

- session & pswd management

- implementation, not protocol

 roadmap
‣ identity X.0
‣ OAuth flow
‣ malicious OAuth applications
‣ insecure OAuth implementation
‣ OpenID intro
‣ how i owned my friend’s ID
‣ insecurities with OpenID
‣ summary

what’s OpenID?
(decentralized)

http://me.yahoo.com/khash_K

http://me.yahoo.com/mrjordan
http://me.yahoo.com/mrjordan

 terminology

‣ end-user (EU)
‣ relying party (RP or consumer)
‣ identity provider (IdP)
‣ identifier (URI or XRI)

what problems does
it solve?

site registration

painful & unverified

too many usernames
and passwords

silo
(site-centric)

how about
usernames & passwords?

directory centric

single directory entry

single authority

not portable

what is OpenID
mimicking?

government issued ID

provides consistency in identification issuance

benefits?

consistent verification process

what does she need?

instead of establishing trust with each business ...

asymmetric trust = scalability

side effects?

simple flow
(auth request & auth response)

 1. end-user presents the consumer with a unique identifier
	

 2. consumer directs the end-user to the IdP auth landing page
	

 3. end-user authenticates and is redirected back to consumer

 roadmap
‣ identity X.0
‣ OAuth flow
‣ malicious OAuth applications
‣ insecure OAuth implementation
‣ OpenID intro
‣ how i owned my friend’s ID
‣ insecurities with OpenID
‣ summary

key to the kingdom

weak identity providers

enabling your Y! OpenID

story
how i met my friend’s OpenID accounts

 design flaws in
Yahoo’s password

management

OpenID account
compromise=

intent

 strategy

‣ find a weak link
‣ a path of least
 resistance

= password reset scheme

Yahoo! verification process

Yahoo! verification process
(cont.)

Yahoo! pswd reset process

up the ante

‣ access all relying parties

‣ access other accounts linked to Yahoo!

elapsed time: 40 minutes
game over!

target is informed

defense

changed secret
questions & answers

now what?

re-compromise

new reset
question!

re-compromise
(cont.)

what’s this link?

flaw #1: reverts back

back to the
old question!

defense
(2nd try)

kept original questions, but
replaced the answers to

something else

strong passphrase here ...

strong passphrase here ...

flaw #2: can’t replace answers

‣ new answer does not “replace” old one
‣ users end up with a collection of identical Q&As
‣ the original, default, insecure Q&As still work

solution

‣ protect the OpenID kingdom
‣ IdPs need strong password management
‣ end-users need strong online presence
‣ end-users cannot leave online bread crumbs
‣ end-users to use ONLY trustworthy IdPs

 roadmap
‣ identity X.0
‣ OAuth flow
‣ malicious OAuth applications
‣ insecure OAuth implementation
‣ OpenID intro
‣ how i owned my friend’s ID
‣ insecurities with OpenID
‣ summary

OpenID insecurities

stinky phish

why phishing is trivial?

a typical OpenID login procedure:

1. Visit a legitimate site you have never seen before
2. See a bunch of OpenID IdP logos
3. Enter your favorite OpenID name and click “Log in”
4. See the login form for your legitimate OpenID provider
5. Submit your password

a phished OpenID login procedure:

1. Visit a legitimate site you have never seen before
2. See a bunch of OpenID IdP logos
3. Enter your favorite OpenID name and click “Log in”
4. See the login form for your legitimate OpenID provider
5. Submit your password

built-in phishing capabilities

‣ redirection is under the control of the evil party
‣ consumer (RP) decides the IdP server URL and landing page

‣ users trained to follow a link from the *unknown*

‣ minimal trickery
‣ nothing special, just a site that uses OpenID

‣ no need for spam emails and social-engineering

‣ high number of users *never* look at the location bar
‣ main reason phishing works in the first place

how?

impersonate a single, and well-known

login page

‣ build an interesting site
‣ require OpenID auth to access or post content
‣ create a replica landing page for Yahoo!
‣ intercept and redirect to phish landing page

if(empty($_GET['openid_url'])) {
 $error = "Expected an OpenID URL.";
 include 'index.php';
 exit(0);
}

if(empty($_GET['openid_url'])) {
 $error = "Expected an OpenID URL.";
 include 'index.php';
 exit(0);
}

if(strstr($_GET['openid_url'], "me.yahoo.com")) {
 include 'yahoo_phish_offer.php';
 exit(0);
}

sample
OpenID PHP

code

malicious
redirection

replica login page

solutions
(and a few suboptimal non-solutions)

user education

“ The user's going to pick dancing pigs over security every time”

- Bruce Schneier

IP endorsement
‣ dynamic IP addresses
‣ roaming users
‣ public computers
‣ won’t work!

client-side certificates
‣ little better
‣ similar issues as IP
‣ maintenance and provisioning nightmare

enforce bookmarks
‣ create bookmark upon IdP registration
‣ no authentication landing page upon redirect
‣ always use bookmark to log in
‣ UX = F

carry your wallet in a safe!
‣ IdP to not display the login page
‣ ask users to manually browse to the login page
‣ does not appeal to the masses!
‣ disrupts the OpenID flow
‣ UX = F

better approaches ...

personalized sign-in seals
‣ select a personalized image or text
‣ a secret between you and the IdP
‣ common with banking sites
‣ still involves user education

browser support “known host”

"You're connecting to site X under SSL for the first time. If
this is unexpected, you may be the victim of a phishing
attack. Proceed?"

OneTimePassword
(OTP)

‣ tokens
‣ out-of-band communication
‣ provides a 2nd factor authentication

quick note about privacy
‣ IdP receives and processes all your login attempts
‣ IdP as the central point of your online authentication
‣ track users by the masses by owning a single IdP!

OpenID take-aways:

- weak identity providers

- phish

- privacy

- outsourcing your security policy!

- passwords not the perfect solution

remember

 1. protocols with very good intentions
	

 2. it’s the implementation, not the protocol
	

	

	

THANK YOU!

khash@thinksec.com

mailto:khash@thinksec.com
mailto:khash@thinksec.com
mailto:khash@thinksec.com
mailto:khash@thinksec.com

