

Advances in Suricata

 Eric Leblond
● @Regiteric
● http://home.regit.org/

 Victor Julien
● @inliniac
● http://www.inliniac.net/

http://home.regit.org/
http://www.inliniac.net/

Content of this talk

 Introduction to Suricata, OISF

 Eric Leblond will speak about recent
advancements in TLS handling

 I will discuss a new feature: file extraction

What is Suricata

 Suricata is a Network Intrusion Detection and
Prevention System (IDS/IPS)

 Open Source

 Inspects network packets

 (mainly) signature based inspection

Who builds Suricata

 Build by Open Information Security
Foundation (OISF)

 US based non-profit

 Funded by DHS

 Supported by consortium of vendors

How does Suricata IDS work

 placement in the network to see packets

 decoding of packets

 reassembly of IP packets, TCP streams

How does Suricata IDS work (2)

 parsing of higher level protocols (e.g. HTTP)

 detection

 output -- events, alerts

How does Suricata IPS work

 similar to the IDS, however inline

 normalization

 blocking

Limitations of an IDS

 easy to overwhelm, packet loss

 impedance mismatch

Example of impedance mismatch

Source: http://tacticalwebappsec.blogspot.com/2009/05/http-parameter-pollution.html

Limitations of an IDS (2)

 false positives

 false negatives

 encryption

So what does Suricata do to deal with
this a.k.a. Major features

 getting the most out of your hardware: multi
threading, hardware capture cards, GPU

 high level protocol detection (HTTP, etc)

 high speed IP matching

 advanced HTTP inspection and logging

Multi-threading

 Multi core is here to stay

 highly modular design of the engine

 scalable

Hardware Capture Card Support

 Endace DAG cards

 Napatech cards (in development)

 PF_RING

GPU acceleration

 CUDA only

 design challenges

 OpenCL?

High level protocol detection

 very helpful in detecting malware
 Previously:

 alert tcp $HOME_NET ->
$EXTERNAL_NET $HTTP_PORTS
(...detection keywords...)

 $HTTP_PORTS usually set to something
like 80:81,8080

High level protocol detection (2)

 Now:

 alert http $HOME_NET ->
$EXTERNAL_NET any (...detection
keywords...)

 detection on ANY port

High speed IP matching

 Emerging Threats project has large IP lists of
known bad hosts & networks

 You'd like to know if hosts on your network
talk to known compromised hosts, don't you?

 Suricata can efficiently load them all and
match with low overhead

Advanced HTTP inspection and
logging

 HTTP session parsing with libhtp on top of
stream reassembly

– Written by Ivan Ristic of ModSecurity /
IronBee fame

 Full HTTP session state reconstruction

Advanced HTTP inspection and
logging (2)

 File extraction ... more on that later

 Request logging

HTTP request logging

 normal & extended

 11/24/2009-18:55:44.663812 192.168.1.42
[**] /x.exe [**] Mozilla/4.0 (compatible; MSIE
6.0; Windows NT 5.1) [**] 192.168.1.1:55868
-> 192.168.1.42:6763

 Extended includes more info, for http_agent

Next up, Eric!

Suricata TLS support

 TLS is an application
layer

 Automatic detection
● Independent of the

port
● Based on pattern

matching

 Dedicated keywords
● Usable in signatures

 Suricata application
layer
● HTTP
● SMTP
● FTP
● SSH
● DCERPC
● SMB

A TLS handshake parser

 Handshake parser: No decryption of
encrypted traffic

 Method
● Analysis of TLS handshake
● Parsing of the TLS messages

 Security oriented parser
● Code developed from scratch

– Provide a hackable code-base for the feature
– No external dependency
– Contributed by Pierre Chifflier

● With security in mind

– Resistance to attack (audited, fuzzed)
– Anomaly detection

Writing signatures using TLS
 The syntax

● “alert tcp $HOME_NET any → $EXTERNAL_NET 443”

Becomes
● “alert tls $HOME_NET any → $EXTERNAL_NET any”

 Interests
● No dependency on IP parameters
● Limit match to the correct protocol

– Less false positive
– More performance

TLS keywords

 TLS.version
● Match on protocol version number

 TLS.subject
● String match on certificate Subject

 TLS.issuerdn
● String match on certificate IssuerDN

 More to come

Detecting Rogue certificate

 The conditions
● Running some servers
● Having an official PKI

 The sig
● “alert tls any any → $SERVERS any

(tls.issuerdn:!”C=NL, O=Staat der Nederlanden,
CN=Staat der Nederlanden Root CA”;)”

Detecting certificate change
 Google.com is signed by Google Internet

Authority
● not diginotar
● This is bad, let's drop it

 “drop tls $CLIENT any → any any
(tls.subject=”C=US, ST=California,
L=Mountain View, O=Google Inc,
CN=*.google.com”; tls.issuerdn=!”C=US,
O=Google Inc, CN=Google Internet
Authority”;)”

 What KPN has been hacked too!
● Let's rock
● “drop tls $CLIENT any → any any

(tls.issuerdn=”C=NL”);”

Current limitation and upcoming
evolution

 Match is done on first certificate of the chain
● Can't do check on chained certificates
● Parser is compliant, only syntax is missing

 Keywords are missing and will be added
● Cryptographic algorithm used/proposed
● Key size
● Diffie-Hellman parameters

 Statistical study

File extraction

 Currently in development

 Extract files from HTTP sessions: uploads
and downloads

 Libmagic used to determine file types

 Powerful rule language extensions

Suricata rule language

 sub set and super set of Snort rule language

 left out old stuff nobody used

 added some new things

Suricata rule language (2)

 Example:

alert tcp $HOME_NET any ->
$EXTERNAL_NET 80 (msg:”example rule”;
content:”EVILSTUFF”; sid:1; rev:1;)

content:”EVILSTUFF”; http_uri; nocase;

File extract rule language
extensions

 filemagic

– alert http any any -> any any
(msg:"windows exec"; filemagic:"executable
for MS Windows"; sid:1; rev:1;)

 filestore

– alert http any any -> any any
(msg:"windows exec"; filemagic:"executable
for MS Windows"; filestore; sid:1; rev:1;)

File extract rule language
extensions (2)

 Fileext

– alert http any any -> any any (msg:"jpg
claimed, but not jpg file"; fileext:"jpg";
filemagic:!"JPEG image data"; sid:1; rev:1;)

 Filename

– alert http any any -> any any
(msg:"sensitive file leak"; filename:"secret";
sid:1; rev:1;)

File extract rule language
extensions (3)

 Uploads to your webserver that only accepts
PDF
● alert http $EXTERNAL_NET ->

$WEBSERVER any (msg:”suspicious
upload”; flow:established,to_server;
content:”POST”; http_method;
content:”/upload.php”; http_uri;
filemagic:!"PDF document"; filestore; sid:1;
rev:1;)

File extract rule language
extensions (4)

● alert http $EXTERNAL_NET ->
$WEBSERVER any (msg:”suspicious
upload”; flow:established,to_server;
content:”POST”; http_method;
content:”/upload.php”; http_uri;
fileext:!”pdf"; filestore; sid:2; rev:1;)

File extract rule language
extensions (5)

 private keys

 alert http $HOME_NET any →
$EXTERNAL_NET any (msg:”outgoing
private key”; filemagic:”RSA private key”;
sid:1; rev:1;)

File extract rule language
extensions (6)

 Photoshop and Canon raw files

 drop http $HOME_NET any
$EXTERNAL_NET any (msg:”Canon Raw
upload”; flow:to_server; filemagic:”Canon
CR2 raw image data”; sid:1; rev:1;)

 drop http $HOME_NET any →
$EXTERNAL_NET any (msg:”Photoshop
upload”; flow:to_server; filemagic:”Adobe
Photoshop Image”; sid:2; rev:1;)

File storage

 Each file is stored on disk & accompanied
with a meta data file

 Global limits to storage use

File extract limitations and open
issues

 Protocols

 Storage limits

 MS Office files

Suricata development

 2 monthly “stable” release cycle: time based
releases

 priorities determined on public brainstorm
sessions: last one at RAID 2011, before that
RSA San Francisco 2011

 roadmap, bugs, issues in public “redmine” site

Interested in trying Suricata?

 Source

 Debian/Ubuntu/Fedora: old versions

 Security Onion

 Smooth Sec

Thanks for your attention!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

