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Content of this talk

 Introduction to Suricata, OISF

 Eric Leblond will speak about recent 
advancements in TLS handling

 I will discuss a new feature: file extraction



  

What is Suricata

 Suricata is a Network Intrusion Detection and 
Prevention System (IDS/IPS)

 Open Source

 Inspects network packets

 (mainly) signature based inspection



  

Who builds Suricata

 Build by Open Information Security 
Foundation (OISF)

 US based non-profit

 Funded by DHS

 Supported by consortium of vendors





  

How does Suricata IDS work

 placement in the network to see packets

 decoding of packets

 reassembly of IP packets, TCP streams



  

How does Suricata IDS work (2)

 parsing of higher level protocols (e.g. HTTP)

 detection

 output -- events, alerts



  

How does Suricata IPS work

 similar to the IDS, however inline

 normalization

 blocking



  

Limitations of an IDS

 easy to overwhelm, packet loss

  impedance mismatch



  

Example of impedance mismatch

Source: http://tacticalwebappsec.blogspot.com/2009/05/http-parameter-pollution.html



  

Limitations of an IDS (2)

 false positives

 false negatives

 encryption



  

So what does Suricata do to deal with 
this a.k.a. Major features

 getting the most out of your hardware: multi 
threading, hardware capture cards, GPU

 high level protocol detection (HTTP, etc)

 high speed IP matching

 advanced HTTP inspection and logging



  

Multi-threading

 Multi core is here to stay

 highly modular design of the engine

 scalable



  

Hardware Capture Card Support

 Endace DAG cards 

 Napatech cards (in development) 

 PF_RING



  

GPU acceleration

 CUDA only

 design challenges

 OpenCL?



  

High level protocol detection

 very helpful in detecting malware
 Previously:

  alert tcp $HOME_NET -> 
$EXTERNAL_NET $HTTP_PORTS 
(...detection keywords...)

  

  $HTTP_PORTS usually set to something 
like 80:81,8080



  

High level protocol detection (2)

 Now:

  alert http $HOME_NET -> 
$EXTERNAL_NET any (...detection 
keywords...)

 detection on ANY port



  

High speed IP matching

 Emerging Threats project has large IP lists of 
known bad hosts & networks

 You'd like to know if hosts on your network 
talk to known compromised hosts, don't you?

 Suricata can efficiently load them all and 
match with low overhead



  

Advanced HTTP inspection and 
logging

 HTTP session parsing with libhtp on top of 
stream reassembly

– Written by Ivan Ristic of ModSecurity / 
IronBee fame

 Full HTTP session state reconstruction



  

Advanced HTTP inspection and 
logging (2)

 File extraction ... more on that later

 Request logging



  

HTTP request logging

 normal & extended 

 11/24/2009-18:55:44.663812 192.168.1.42 
[**] /x.exe [**] Mozilla/4.0 (compatible; MSIE 
6.0; Windows NT 5.1) [**] 192.168.1.1:55868 
-> 192.168.1.42:6763

 Extended includes more info, for http_agent



  

Next up, Eric!



  

Suricata TLS support

 TLS is an application 
layer

 Automatic detection
● Independent of the 

port
● Based on pattern 

matching

 Dedicated keywords
● Usable in signatures

 Suricata application 
layer
● HTTP
● SMTP
● FTP
● SSH
● DCERPC
● SMB



  

A TLS handshake parser

 Handshake parser: No decryption of 
encrypted traffic

 Method
● Analysis of TLS handshake
● Parsing of the TLS messages



  

 Security oriented parser
● Code developed from scratch

– Provide a hackable code-base for the feature
– No external dependency
– Contributed by Pierre Chifflier

● With security in mind

– Resistance to attack (audited, fuzzed)
– Anomaly detection



  

Writing signatures using TLS
 The syntax

● “alert tcp $HOME_NET any → $EXTERNAL_NET 443”

Becomes
● “alert tls $HOME_NET any → $EXTERNAL_NET any”

 Interests
● No dependency on IP parameters
● Limit match to the correct protocol

– Less false positive
– More performance



  

TLS keywords

 TLS.version
● Match on protocol version number

 TLS.subject
● String match on certificate Subject

 TLS.issuerdn
● String match on certificate IssuerDN

 More to come



  

Detecting Rogue certificate

 The conditions
● Running some servers
● Having an official PKI

 The sig
● “alert tls any any → $SERVERS any 

(  tls.issuerdn:!”C=NL, O=Staat der Nederlanden, 
CN=Staat der Nederlanden Root CA”;)”



  

Detecting certificate change
 Google.com is signed by Google Internet 

Authority
● not diginotar
● This is bad, let's drop it

 “drop tls $CLIENT any → any any 
( tls.subject=”C=US, ST=California, 
L=Mountain View, O=Google Inc, 
CN=*.google.com”; tls.issuerdn=!”C=US, 
O=Google Inc, CN=Google Internet 
Authority”;)”



  

 What KPN has been hacked too!
● Let's rock
● “drop tls $CLIENT any → any any 

( tls.issuerdn=”C=NL”);”



  

Current limitation and upcoming 
evolution

 Match is done on first certificate of the chain
● Can't do check on chained certificates
● Parser is compliant, only syntax is missing

 Keywords are missing and will be added
● Cryptographic algorithm used/proposed
● Key size
● Diffie-Hellman parameters

 Statistical study



  

File extraction

 Currently in development

 Extract files from HTTP sessions: uploads 
and downloads

 Libmagic used to determine file types

 Powerful rule language extensions



  

Suricata rule language

 sub set and super set of Snort rule language

 left out old stuff nobody used

 added some new things



  

Suricata rule language (2)

 Example:

alert tcp $HOME_NET any -> 
$EXTERNAL_NET 80 (msg:”example rule”; 
content:”EVILSTUFF”; sid:1; rev:1;)

content:”EVILSTUFF”; http_uri; nocase;



  

File extract rule language 
extensions

 filemagic

– alert http any any -> any any 
(msg:"windows exec"; filemagic:"executable 
for MS Windows"; sid:1; rev:1;)

 filestore

– alert http any any -> any any 
(msg:"windows exec"; filemagic:"executable 
for MS Windows"; filestore; sid:1; rev:1;)



  

File extract rule language 
extensions (2)

 Fileext

– alert http any any -> any any (msg:"jpg 
claimed, but not jpg file"; fileext:"jpg"; 
filemagic:!"JPEG image data"; sid:1; rev:1;)

 Filename

– alert http any any -> any any 
(msg:"sensitive file leak"; filename:"secret"; 
sid:1; rev:1;)



  

File extract rule language 
extensions (3)

 Uploads to your webserver that only accepts 
PDF
● alert http $EXTERNAL_NET -> 

$WEBSERVER any (msg:”suspicious 
upload”; flow:established,to_server; 
content:”POST”; http_method; 
content:”/upload.php”; http_uri; 
filemagic:!"PDF document"; filestore; sid:1; 
rev:1;)



  

File extract rule language 
extensions (4)

● alert http $EXTERNAL_NET -> 
$WEBSERVER any (msg:”suspicious 
upload”; flow:established,to_server; 
content:”POST”; http_method; 
content:”/upload.php”; http_uri; 
fileext:!”pdf"; filestore; sid:2; rev:1;)



  

File extract rule language 
extensions (5)

 private keys

  alert http $HOME_NET any → 
$EXTERNAL_NET any (msg:”outgoing 
private key”; filemagic:”RSA private key”; 
sid:1; rev:1;)



  

File extract rule language 
extensions (6)

 Photoshop and Canon raw files

  drop http $HOME_NET any 
$EXTERNAL_NET any (msg:”Canon Raw 
upload”; flow:to_server; filemagic:”Canon 
CR2 raw image data”; sid:1; rev:1;)

  drop http $HOME_NET any → 
$EXTERNAL_NET any (msg:”Photoshop 
upload”; flow:to_server; filemagic:”Adobe 
Photoshop Image”; sid:2; rev:1;)



  

File storage

 Each file is stored on disk & accompanied 
with a meta data file

 Global limits to storage use



  

File extract limitations and open 
issues

 Protocols

 Storage limits

 MS Office files



  

Suricata development

 2 monthly “stable” release cycle: time based 
releases

 priorities determined on public brainstorm 
sessions: last one at RAID 2011, before that 
RSA San Francisco 2011

 roadmap, bugs, issues in public “redmine” site



  

Interested in trying Suricata?

 Source

 Debian/Ubuntu/Fedora: old versions

 Security Onion

 Smooth Sec



  

Thanks for your attention!



  

Questions?
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