
THE WHOLE NINE
YARDS

DEEPSEC 2012

INTROS

Peter Morgan

Senior Consultant at Accuvant LABS, previously at
Matasano Security.

John Villamil

Senior Consultant at Matasano Security, previously
at Mandiant.

BOTH

Fuzzing becomes really useful to us on a day to day basis

Most of the projects we work with require some sort of fuzzing

HISTORY OF
MONKEYHERD

We don’t play defense... much; We’re offensive

This was driven by need

What this most assuredly is not

Voila! Monkeyherd

PETE

We are not defensive testers!

Through offensive testing we have learned some things that we think would help defensive testers!

We built the earlier iterations of this software to fulfill a testing need, then found it easily adaptable to further needs

Looking back, we haven’t seen much discussion on the full lifecycle of implementing a fuzzing framework

What this is not:
* How to write a fuzzer
* Why dumb fuzzing works
* A story about a dumb fuzzer that found OMG bugz!

FUZZING

Microsoft

Microsoft runs fuzzing botnet, finds 1,800 Office bugs

Automated Pentration Testing with Whitebox Fuzzing

SAGE: whitebox fuzzing for security testing

Fuzz Testing at Microsoft and the Triage Process

http://rise4fun.com/

Google

Fuzzing at Scale (http://googleonlinesecurity.blogspot.co.at/2011/08/fuzzing-at-scale.html)

Adobe admits Google fuzzing report led to 80 'code changes' in Flash Player

Fuzzing for Security (http://blog.chromium.org/2012/04/fuzzing-for-security.html)

Adobe

Fuzzing Reader - Lessons Learned (http://blogs.adobe.com/asset/2009/12/fuzzing_reader_-_lessons_learned.html)

Companies that do it well

JOHN

WHY AREN’T THERE
MORE?

Some basic knowledge

Understanding that fuzzing is beneficial

The motivation to find and deal with bugs

Company support

Time

Resources

Personnel

Experience with the fuzzing process

This is covered by the talk

Requirements for fuzzing

JOHN

CURRENT FRAMEWORKS
The most popular are Peach and Sulley

They each support useful operations such as code coverage and target reboot

The biggest disadvantage to using them is having to learn
how they work.

Fuzzing needs to be flexible with a quick startup time

Other fuzzers
Fusil

https://bitbucket.org/haypo/fusil/wiki/Home

Radamsa

http://code.google.com/p/ouspg/wiki/Radamsa

Zzuf

http://caca.zoy.org/wiki/zzuf

JOHN

Fusil has mangle.py, a very nice mangle library.

Radamsa is very easy to use.

Zzuf also supports code coverage information.

If you are going to use a premade fuzzer, see how it handles the input method for
the application. For example, see how it handles packet fuzzing and state if the
application accept network data.

Peach

Monitors

Loggers

Mutators

IO Handling

Code Coverage - plugin

http://peachfuzzer.com

Sulley

Monitors

Loggers

Mutators

IO Handling

Code Coverage

https://github.com/OpenRCE/
sulley

ht
tp

:/
/w

w
w

.fl
in

kd
.o

rg

ht
tp

:/
/w

w
w

.k
io

pt
rix

.co
m

JOHN

Both are great if you know the details of the input.

They both support major fuzzer features.

Peach uses an xml based template for the input types for describing a file

Sulley uses an API

THE STORY

Fault injection testing is the process of studying a program
through its behavior with unintended input.

Crashes* are data which help construct a model

This data is used not only to fix/exploit bugs

It is used to optimize every step of the fuzzing process and gets updated with
new software versions

Simply relying on a current popular framework fails to
use this data

Its not just about finding bugs to exploit

PETE

* not just crashes; execution traces can be useful too

* allude to a case where instead of hunting for crashes, the framework is oriented to
determine what inputs will allow a certain BB traversal

FOR WHOM?

For builders:

The ideal is dedicated testing nodes running on nightly builds

Continually updated with samples to stress new code as the code is added

Usually not possible - see “Fuzzing Requirements”

The very minimum should be before a public release

PETE

This talk is targeted toward developers, product security teams, and admittedly,
bughunters

* Think Continuous Integration
* Distributed
* Trying to start this process the week of a release is probably not going to work

* The true wins here come from integration
* Build it into the SDL
* Make devs aware their software will undergo fuzzing

ADVANTAGES OF A
BUILDER

Source code and intimate knowledge of how a
program works

Sees incremental changes to a program over a period of time

Can create a large set of sample input for maximum code
coverage

PETE

This saves valuable reversing time

Knowledge of the development teams
 practices
 internal motivations
 corporate culture, etc

DIFFICULTIES FOR
DEVELOPERS

Not breakers; not just looking for one vuln, looking for
ALL vulns

Vulns->Bugs

From the security perspective, the cards are stacked against
you

Large teams with async checkins

Modern code shipping timelines :)

Resources

PETE

Simple 5-line python fuzzers will not do

Randomized positive test case modulations to look for errant crashes that may allow exploitability is cherry picking, we need to be
streetsweepers
* this works for offensive testers
* this doesn’t help the defense

Developer code change

Ambulance bug hunting

Resources:
 Money
 Time
 Expertise
 Interest

FUZZ NODE PROCESS
OVERVIEW

Enumerate attack surface

Pool of samples for code coverage

Mutation/Generation

Automated input delivery

Grabbing crashes and exceptions

Storing the data

Run analysis on crash data

John

How do we know when there is enough samples?
What is code coverage useful for?
Data is used when analyzing crashes.

LETS DIVERGE

Single-case fuzzing; this has been done before

Vision of how this will work

KISS

Monkeyherd’s features

PETE

Lead in to the distributed stuff

Vision of how this will work

Its really easy to get excited here:

We see a skynet-style fuzzing farm operating thousands of nodes from outer space scaling at will, autonomously based on a doctorate level heuristic with the
ability to alert the devs when a serious issue is found

Hold on.

Lets remember Ben Nagy’s great talk about fuzzing, keep is simple; don’t over-engineer.

Think about this like a good vine gene, let it grow around the things it needs do, avoid over-engineering from the start

That being said, we should have some thought about how this will work

DISTRIBUTED TESTING

Real-world defensive testing may need dozens to
thousands of testing nodes for proper coverage

How can we know?

Scalability should be considered at the start

Inherent problem sets arise

PETE

Allude to code coverage

Optimization
* Don’t worry about optimization yet, there might be time for that later, if there isn’t you
probably shouldn’t be spending time on it here

CHALLENGES OF
SCALING

Node maturation

Test case communication

Avoiding duplicates [input,crash]

Node status profiling

Communicating results

Optimizing behavior mid-cycle

PETE

CHALLENGE: NODE
MATURATION

Bare install -> functional testing node

Communication channel

Software installation

Tool delivery

PETE

BASIC NODE
MATURATION

toolchain installation

fuzzer software deployment

master node check-in

where will this be?

PETE

* installation
 puppet
 shell scripts
 cfengine

* software deployment
 similar to above
 git checkout

* scripted to operate successfully against an environment of choice

* here one should think about internal vs. external hosted nodes
 internet connected?
 net environment

* Internal: install from network share/ local repo

MONKEYHERD DESIGN
DECISIONS

Human interaction required

Built for operation on EC2

SSH

Git

Ruby/Python

PETE

EC2
Why?
 you may be tempted to try to use random hosts for this task
 avoid the pitfalls of trying to debug this across a dozen OS/version combos

 Pick something that allows consistency; we will revisited pitfalls later

SSH
 alternative is spiped
 obviously need secure comm channel
 establish tunneling to master nodes

Git
 could be any VCS,
 you want to be able to quickly hop to a fuzzer node and have an idea of what rev its running

Ruby
 pick any instrumentation language, ruby is my fav, John likes python
 monkeyherd is interesting in that it doesn’t matter!

CHALLENGE: TEST CASE
COMMUNICATION

Design decision: generate and send, or build on
node?

How?

PETE

What should we consider?
 * file size issues are obviously a problem
 * small file-format fuzzing vs movie files for media players
 * tracking of fuzz test case data
 * how to do that?
 * imagine when the test case causes a valuable crash
 * John will get back to that later

We will need a C&C for this

COMMAND AND
CONTROL

Problem sets share a common need for C&C

Tons of options

Web services

REST framework

DSL

KISS and REDIS

PETE

Which problem sets?
 * test case distribution
 * actual command and control
 * status requests
 * results transmission
 * GUI automated sync

This will be insanely useful in the future, as in any distributed system

There are literally tons of options
* any message queue
* Web services
* HTTP with REST
* Custom DSL

Before you spend time overengineering this too (starting to see a trend here? trust me it gets worse)

Go back. Keep It Simple.

Redis is a fast KV store
C with no deps outside libc
Built-in pub/sub

MONKEYHERD: REDIS

KV store with simple data structuring operations

More than just a C&C

Master and slaves communicate through Redis node

C&C setup using LIST operations

Not PUB/SUB

PROTIP: Windows

PETE

Obviously a security hazard, ensure your node maturation phase takes into account the
issues of someone taking over your C&C

DDOS is fun

More than a C&C

Could do so using PUB/SUB mechanisms, but in practice timing issues were encountered
LIST operations are persistent

PROTIP: Don’t instrument on windows

C&C MESSAGES

global_nodelist - SET - global list of all available nodes

last_nodelist - SET - list of all responding nodes

notifypub - PUBLISH - all slave nodes SUBSCRIBE to notifypub to listen for notification messages

NodeID:CC:pause - LIST - Used to command node to pause operations

NodeID:CC:crash - LIST - Set when debugging instance detects crash

NodeID:crashlist - LIST of crash instance IDs - incremented

NodeID:Crash:ID:doutput - debugger report of crash ID

NodeID:Crash:ID:input - file triggering crash

NodeID:Crash:ID:input_hash - md5 of input file

PETE

CHALLENGE: NODE
STATUS

Are nodes responding? How can we check
efficiently?

Simple PUB/SUB in Redis

Reality: there is hand-holding needed

PETE

Ends up being 20 lines of ruby to broadcast 3 messages, check
for responses, and list available/unavailable nodes in redis
console

CHALLENGE: RESULTS
COMMUNICATION

Mostly Solved :)

Put the results in redis directly

Solved in other ways

PETE

An interesting issue is when input file is huge
! - take a binary difff
! - store the diff and the hash of the input file

CODE COVERAGE

Breakpoints
IDA for function offsets

pydbg/ragweed

http://paimei.googlecode.com/svn/trunk/utils/code_coverage.py

https://www.corelan.be/index.php/2010/10/20/in-memory-fuzzing/

Dynamic Binary Instrumentation
For on the fly checking of basic blocks

In this talk we use PIN

JOHN

Get a list of functions from IDA and set breakpoints on them through pydbg/ragweed.

When a breakpoint is hit, remove that from the list. If new samples dont hit breakpoints, discard them.

PIN gives more detailed control.

Both are valid options and have their positives and negatives.

IDA may not find all the functions addresses and so the coverage breakpoints wont be as complete.

When using PIN, the initial application setup functions can be discarded when considering code coverage.

CODE COVERAGE: HOW
DOES IT WORK?

We use PIN by Intel
Dynamic Binary Instrumentation tool which interweaves your code with the program

www.pintool.org for more info. Documentation is excellent.

What to record - choose one
Basic Block entrance or exit

Control flow instructions (jmp, ret, call)

Arbitrary instruction or function call (eg. coverage of malloc)

JOHN

Instrumentation tools allow you to insert your code into a programs execution flow.

This code can be used to analyze or modify a program at run time.

Because PIN is dynamic, a PIN block is different from a regular basic block you will see in IDA. A PIN
bbl is a single entry single exit piece of code. A regular bb has one entry and one exit but can contain
calls to other functions within it.

Screenshot is of PIN API used to call a user defined function before each basic block.

NOTEPAD.EXE

JOHN

Using PIN it is easy to record any type of application data and
graph it.

Screenshot is of control flow branches and calls in notepad.exe.

CALC.EXE

Size difference ~650k

Each point is a branch found by PIN

JOHN

A bigger amount of instructions increases

CODE COVERAGE: HOW
DOES IT WORK?

PIN allows us to base coverage on additional information
Stack data

register values

Caller instead of callee

Number of instructions executed before break

etc

Additional flexibility allows for more detailed data

Image Trace BBL Instruction

Granularity

JOHN

TAINT TRACING
Based on simple rules

track registers and memory accesses

if source of an operation is tainted, the destination becomes tainted

Implementations:

BitBlaze

Dytan

PrivacyScope

libdft

Minemu

add eax, ebx

eax

xor eax, eax

eax

JOHN

TAINT PROPAGATION
What is tainted at crash time?

Rules checking if tainted data is passed into system functions. ie strncpy(dest,
src, tainted length)

Made Easy with PIN

INS_OperandIsMemory, INS_OperandIsREG, INS_OperandIsImmediate

Usually done using the XED2 engine and function pointers

...
 op[XED_ICLASS_ADD] = &op_add;
 op[XED_ICLASS_LEA] = &op_lea;

 op[XED_ICLASS_MOV] = &op_mov;
 op[XED_ICLASS_POP] = &op_pop;

 op[XED_ICLASS_PUSH] = &op_push;
 op[XED_ICLASS_SUB] = &op_sub;

 op[XED_ICLASS_XCHG] = &op_xchg;
op[XED_ICLASS_XOR] = &op_xor;

...

JOHN

TAINT PROPAGATION

How can you check dozens or hundreds of allocated memory chunks?

Shadow memory techniques help to solve memory propagation

+ Extensible and fast with proper optimizations

 - Can use a lot of memory

Each bit of the shadowed byte can be used to record information

Has this byte been freed

Is the next/previous byte tainted

How many times has this byte been accessed so far

JOHN

AUTOMATION

Clearly, a huge thing for fuzzing

Already mostly done

CLI

Network

GUI

PETE

The obvious advantage of a fuzzer is the automated testing of input payloads, without sufficient automation it
doesn’t have a place.

Audience involvement:
 Who has written a fuzzer before?
 Who has run into a GUI app that they wanted to fuzz, but didn’t due to complexity?
 We have, lots.

 Simple axiom: if its not easy to hit, its not been hit hard enough

One of Monkeyherd’s advantages is the tight coupling with GUI automation

AUTOIT

Windows application

Free to use

Ruby gem

FFI to DLL

Easy to use functions:

coordinate based click

window title accessors

keystroke automation

sleep

http://www.autoitscript.com/site/autoit/

PETE

LESSONS LEARNED IN
GUI AUTOMATION

Pete’s Razor: sleep(x* 3)

The Mouse Is Trying To Kill You

Don’t click unless you have to!

Be vigilant of where the pointer is

Prune directory used with file dialogs

Navigate to absolute paths in file dialogs

Network is easier, C&C is a huge win here:

PETE
Whenever you think you need a sleep of X, you want x*3
This is a stern suggestion for things like file dialogs

PROTIP: keep directories from which you’re accessing things mostly clear, it will reduce dialog population time which can be considerable

Always navigate to absolute paths in file dialogs

Where the pointer is:
 Burned a solid night debugging errors that were coming up because I didn’t reposition the mouse cursor to a safe position before continuing automation

Don’t forget calculating pixel positions of things on the screen always will depend on the display resolution. It’s almost always better to find the right combination of tab,
and arrow keys.

Network fuzzing:
 Prepare the test case message
 Drive the application to the state where it will accept a testcase message
 Alert the test case handler to fire the message
 Reset state

GUI AUTOMATION
PROCESS

Record the workflow by hand

Decompose application usage into states

Use Keystroke automation first!

If workflow requires, implement mouse clicks

After each use, reposition cursor in safe area

Use GUI-based assertions

Observe places to pause other components

Test now, bask in bug glory later

PETE
Mock up a file-format case:
 * Open application - record time
 * Invoke the File | Open dialog - record time
 * Navigate to an absolute reference point, then navigate to relative file
 * helps to configure the target to have a trivially reached directory to populate
with testcases
 * Launch a positive testcase
 * Revert to the File | Open process and repeat

 * Now launch a negative test case
 * Observe the debugger

GUI ASSERTIONS?!

These are minor tests that aim to check the state of
the GUI automation phase

Helpful when they scale linearly with the amount of
GUI automation required to instrument the app

AutoIt

Window Titling

Positiontal color tests

PETE

* use these to assert that the GUI automation is in the right state

* you want to link this with the C&C to ensure you can control the
state

* instrument a kill_harness command that will reset the target app
to a known state

TRICKS WITH OTHER
OSES

Might seem like cheating, but VNC!

The window to the world?

iOS

Android

OSX

Linux

PETE

NOT ALL VULNS ARE
CRASHES

Detach from the need to find “crashes”

Memory safety bugs are great, but so are logic bugs

“This is the weapon of the enlightened few. Not as clumsy or
random as a memory overwrite. An elegant weapon for a more
civilized age.” -Not Ben Kenobi

How?

Logic vulns can be more subtle, and sneeky than memory safety
bugs

Think of cases where the goal of fuzz testing isn’t simply crashes,
but attempts to arrive at a location in the binary.
 Simply watching for crashes is insufficient

How?
 Use breakpoints to target sensitive or critical application
functions to assert if execution arrives at the sensitive areas.

!EXPLOITABLE
Most useful feature is the hashing

Simple algo that hashes major and minor stack frames
Its not perfect - duplicate crashes can have a different hash
easily portable to gdb

cdb on windows
-g -G -o -kqm
-logo to log stuff
If exception: -c “$<filename” will run !exploitable and quit
extract classification and hash and add to directory tree

SO YOU HAVE A CRASH

What to do?

fix the bug

decide if it is a security threat

Speeding up the process

Diffs between good and bad input

Code graphs showing execution flow

Specific functions per bug type (ie mallocs/frees)

Record any app or bug specific information

JOHN

Analysis

VISUAL DIFFERENCES

JOHN

Visual differences highlight locations where input has made the
program divert from its routine.

In the cases of a crash, this diversion is unexpected

The tainted data in the first different code block may help in
figuring out why unpredicted behavior has occured.

SOLVING FOR CODE
COVERAGE

What happens when a system function is called?

What happens to the taint?

Automate taint tracing of system functions - still need to manually define
the argument types.

Hardcode common functions into your taint propagation logic.

BAP is awesome!

JOHN

BAP
Binary Analysis Platform

Transforms into an intermediate language

Optimizes the intermediate language

Solves to satisfy a “verification condition” upon that
optimized and simplified intermediate language

We use a custom taint tracing tool

unoptimized BAP IL

JOHN

BAP is a multiplatform suite of tools that operate on assembly instructions.

It translates intel instructions into their explicit operations, spelling out what each operation
does.

If you think about a push instruction, it will sub esp and mov a value into esp.

SOLVING FOR CODE
COVERAGE CONT.

Through solvers we can...

Cut down on the number of samples

Automate how to hit new code

Pass constraint solution to fuzzing nodes and concentrate efforts
per code path (per constraint)

Pass along tainted instructions and have BAP convert to IL and
solve for a specific path

Fuzz only tainted input within each targeted set of basic
blocks?

JOHN

RELEASE

Planning to release Monkeyherd Q12013

Feedback

REFERENCES

“How to Shadow Every Byte of Memory Used by a Program”,
http://valgrind.org/docs/shadow-memory2007.pdf

“BAP: The Next-Generation Binary Analysis Platform”, http://
bap.ece.cmu.edu/

Ben Nagy on Fuzzing, http://seclists.org/dailydave/2010/q4/47

A Million Data Watchpoints, http://www.dynamorio.org/pubs/
zhao-million-watchpoints-CC08.pdf

Taint tracking in fuzzing, http://cansecwest.com/csw11/Metrics
%20for%20Targeted%20Fuzzing%20-%20Duran,%20Miller%20&
%20Weston.pptx

THANK YOU AND Q/A

Contact Us:

Peter Morgan (@rockdon)

peterjmorgan@gmail.com

John Vilamill (@day6reak)

johnvillamil2010@gmail.com

