ellg
Static instrumentation for
binary reverse-engineering

David Guillen Fandos

Tarragona — Spain

david@davidgf.net
davidgf.net — github.com/davidgfnet




Reverse-engineering

* \What are we talking about?

- Discover how a software program works
- Figure out what it does

» Typically done using disassembler/debugger

Nothing new here!



Reverse-engineering

Sounds easy right?

'Désk"{oparch.idb {arch - (fqy.ex
OllyDbg - Crackme 2.exe - [CPU - main thread, module Crack - ||

= [Insight 1.22 ————AX=0000 35[=0100 C5=1AD0O
Jmp raaat BX=0000 DI=FFFE D3=1aAD0
mow =i, CX=00FF BP=091C E3=1aD0
call DxX=1ADB0 3JP=FFFE S55=1AD0O |
call ===
Jmp IP=0100 Flags=7202
call

mow =i, OF DF IF S5F ZF AF PF CF
®or di,di 6 0 1 06 0 6 0 0

mow es,[
mow bx, Stack: S5:000C OF8aA
=xor CX,CX 55:000n O3aAD
mow bp. 353:0008 FO1D
mow dx,ds 55:0006 FEFQ
Jmp zshort S353:0004 9A00
movsh S5:000Z 9FCa
add bh,bh S53:0000 ZOCD
Jjnz 1 35:5F FSS5:FFFE QQOOQ

1ADG: 0100
6 1 2 3 4 5 6 ¥ 8 39 A B C D E F 0123456789ABCDEF I
1lADG:OREE  CD Z0 CO 9F 9a FO FE 1D F© AD 08 8a OF 4n 01 = Lf lizwezifJesdm
1ADO: P10 34 OE 55 01 34 OE 8a OF 91 01 01 0Z FF FF FF 4AUE4 NesERE . 8
plabo:opZa FF FF FF FF FF FF FF FF FF FF FF FF Ca 1A D6 B3
8Aa OF 14 18 Do 1a FF FF FF FF
06 16

rogram entry poink




Reverse-engineering

* Debugging/reading assembly can be tedious
- In fact it's boring
* In the past assembly was written by humans

Now compilers do all the work!!

e |t's difficult to read their machine code but...

* They are predictable, respect call conventions
and interfaces...



Reverse-engineering

So... Why don't we take advantage of this to
ease our lives?

Could we do automatic-reverse engineering?

Let machines do all work!



Automatic reverse-engineering?

* |s it even possible?

* How much
automatic is it?

 Canitreplace a
'human'?

Machines, you know...



Automatic reverse-engineering!

Let's create a tool that does all the dirty job we
usually do by hand!

e How?

Let's use binary instrumentation

Wait, what da heck is binary instrumentation?



Binary instrumentation 101

* Binary instrumentation is a technique which
allows to modify and rewrite existing binaries

- We can modify their behavior at runtime

- Typically used in a non-intrusive way: just
analyze the program

- At assembly level: cannot reverse to high
level languages

* Many tools available:
Pin, DynamoRIO, Valgrind ...



Binary instrumentation 101

* Works by injecting
Instructions in the

original code -
mov edi, esi

- Rewrites code on lea (esi,eax,4), ecx
demand call instrument func pre
o _ mov edi, (ecx)
- Similarly as Virtual mov (ecx+4), edi
Machines do inc edi

_ _ call instrument func pre
* |tis possible to add user mov edi, (ecx+4)
code on instruction basis,
basic block, etc. x86 example: instrument all memory
stores (added instructions in red)



Binary instrumentation 101

* What industry and professionals use binary
instrumentation for?

- Performance evaluation
- CPU emulation

- Tracing and profiling

- Many others...

 \What do we use it for...?




Binary instrumentation 4 hackers

 How can we use it for our purposes?

- Create complex conditional breakpoints

 Just like debugger does, evaluate something and
trigger 'break’

 This is cool cause debuggers usually only do stateless
conditions

- Create app tracing/logging outputs

 Dump any interesting info to a file
» \We can also conditionally dump interesting info

- Modify the application behavior
* \We can modify memory and registers



Binary instrumentation 4 hackers

» Let's try to think as if we were the App coder
* We probably want to work on function basis

- Look for relevant functions

* By using complex breakpoints (retaining status across
executions) it is possible to characterize functions

* We can have a look at the stack too!
- Generate some log with this info
« We can discard 99% of “boring” functions in the binary

| wrote my own tool to do some of this...



Spin: Static instrumentation

* A tool for instrumenting at function granularity

- Runs in application virtual memory space
- Allows us to receive function parameters
- Optionally we can modify return values

- We rely on compilers respecting calling
conventions (true for C/C++)



Spin: Static instrumentation

push 0x67

push eax

call 0x4013742
add esp, 8

push 0x67
push eax

call Oxac00deO
add esp, 8

» Works by patching
call instructions

— Only support for
Immediate encoding

- This way the
Instrumentation is
staftic

- Similar same
principle as DLL
hooking



Spin: Static instrumentation

. T t App.
» Calls get redirected Arget AP

to user defined
functions MyApp.exe &

- DLL injection

Somelib.dll

- It is possible to
hook/dehook specific
Instructions or areas spin.exe

- Choose modules to
patch (avoid patching Spindll |fe——— | Spin.exe
system/standard libs)




Spin: Static instrumentation

Caller

push 0x67

push eax A ciobal mutex lock
call 0x4013742 |—» G%Z%enl%ﬁéxc;c

add esp, 8

Callee

push ebp
. — Restore context

ret ~ Global mutex release

void myfnc(...) {

_Lookup original callee




Demo time!

* This demo is just for “educational purposes”




Practical instrumentation

What we saw:

- Function recognition

« Based on stack parameters
- Assume “strcmp’-like function is being used and look for it

- Accounting

« Data logging for later analysis
— Actuation

* Modify behavior on the fly

- Just a matter of changing return value. Function is nullified.



Advanced instrumentation

Show me more! What else can we do?

- Advanced object analysis: Dump data from C++
objects and C/C++ structs

- De-instrument uninteresting functions

* The overhead is noticeable

 This can be tricky, we don't want to lose data!
- Look for patterns across calls

« Usually is more interesting to locate some functions for
later analysis than trying to get the good one

* | told you! It's not 100% automatic!



Example: std::string

* Analyze function parameters containing
std::string objects

- Important things to know: compiler, libraries ...

- In our example:

« MSVC compiler: Uses ECX as 'this' pointer

« MSVC stdlib: Stores short strings in place, large
strings in heap. Pointer at +4 offset.

- Others: Ability to inject tool at startup

Skipping demo for this one, sorry :(



Example: dynamic dehooking

* Analyzing function calls can be slow.

 |dea: remove hooks from uninteresting
functions

- Simple way to do it: create a criteria and dehook
functions matching/not matching it

- More complex: Retain some status

e Remove functions which do not match some
conditions many times

Go demo go!



Conclusions

* |t Is possible to automate some reverse-
engineering methodologies

* 'Smart’ enough to be used in production
* But where is the [imit?

- The tool is far from perfect
- Not suitable for API hooking
- Protected/obfuscated sources will kick us

| built myself a nice browser form grabber :D



Thank you!

Questions?



