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Reverse-engineering

* \What are we talking about?

- Discover how a software program works
- Figure out what it does

» Typically done using disassembler/debugger

Nothing new here!



Reverse-engineering

Sounds easy right?

'Désk"{oparch.idb {arch - (fqy.ex
OllyDbg - Crackme 2.exe - [CPU - main thread, module Crack - ||

= [Insight 1.22 ————AX=0000 35[=0100 C5=1AD0O
Jmp raaat BX=0000 DI=FFFE D3=1aAD0
mow =i, CX=00FF BP=091C E3=1aD0
call DxX=1ADB0 3JP=FFFE S55=1AD0O |
call ===
Jmp IP=0100 Flags=7202
call

mow =i, OF DF IF S5F ZF AF PF CF
®or di,di 6 0 1 06 0 6 0 0

mow es,[
mow bx, Stack: S5:000C OF8aA
=xor CX,CX 55:000n O3aAD
mow bp. 353:0008 FO1D
mow dx,ds 55:0006 FEFQ
Jmp zshort S353:0004 9A00
movsh S5:000Z 9FCa
add bh,bh S53:0000 ZOCD
Jjnz 1 35:5F FSS5:FFFE QQOOQ
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Reverse-engineering

* Debugging/reading assembly can be tedious
- In fact it's boring
* In the past assembly was written by humans

Now compilers do all the work!!

e |t's difficult to read their machine code but...

* They are predictable, respect call conventions
and interfaces...



Reverse-engineering

So... Why don't we take advantage of this to
ease our lives?

Could we do automatic-reverse engineering?

Let machines do all work!



Automatic reverse-engineering?

* |s it even possible?

* How much
automatic is it?

 Canitreplace a
'human'?

Machines, you know...



Automatic reverse-engineering!

Let's create a tool that does all the dirty job we
usually do by hand!

e How?

Let's use binary instrumentation

Wait, what da heck is binary instrumentation?



Binary instrumentation 101

* Binary instrumentation is a technique which
allows to modify and rewrite existing binaries

- We can modify their behavior at runtime

- Typically used in a non-intrusive way: just
analyze the program

- At assembly level: cannot reverse to high
level languages

* Many tools available:
Pin, DynamoRIO, Valgrind ...



Binary instrumentation 101

* Works by injecting
Instructions in the

original code -
mov edi, esi

- Rewrites code on lea (esi,eax,4), ecx
demand call instrument func pre
o _ mov edi, (ecx)
- Similarly as Virtual mov (ecx+4), edi
Machines do inc edi

_ _ call instrument func pre
* |tis possible to add user mov edi, (ecx+4)
code on instruction basis,
basic block, etc. x86 example: instrument all memory
stores (added instructions in red)



Binary instrumentation 101

* What industry and professionals use binary
instrumentation for?

- Performance evaluation
- CPU emulation

- Tracing and profiling

- Many others...

 \What do we use it for...?




Binary instrumentation 4 hackers

 How can we use it for our purposes?

- Create complex conditional breakpoints

 Just like debugger does, evaluate something and
trigger 'break’

 This is cool cause debuggers usually only do stateless
conditions

- Create app tracing/logging outputs

 Dump any interesting info to a file
» \We can also conditionally dump interesting info

- Modify the application behavior
* \We can modify memory and registers



Binary instrumentation 4 hackers

» Let's try to think as if we were the App coder
* We probably want to work on function basis

- Look for relevant functions

* By using complex breakpoints (retaining status across
executions) it is possible to characterize functions

* We can have a look at the stack too!
- Generate some log with this info
« We can discard 99% of “boring” functions in the binary

| wrote my own tool to do some of this...



Spin: Static instrumentation

* A tool for instrumenting at function granularity

- Runs in application virtual memory space
- Allows us to receive function parameters
- Optionally we can modify return values

- We rely on compilers respecting calling
conventions (true for C/C++)



Spin: Static instrumentation

push 0x67

push eax

call 0x4013742
add esp, 8

push 0x67
push eax

call Oxac00deO
add esp, 8

» Works by patching
call instructions

— Only support for
Immediate encoding

- This way the
Instrumentation is
staftic

- Similar same
principle as DLL
hooking



Spin: Static instrumentation

. T t App.
» Calls get redirected Arget AP

to user defined
functions MyApp.exe &

- DLL injection

Somelib.dll

- It is possible to
hook/dehook specific
Instructions or areas spin.exe

- Choose modules to
patch (avoid patching Spindll |fe——— | Spin.exe
system/standard libs)




Spin: Static instrumentation

Caller

push 0x67

push eax A ciobal mutex lock
call 0x4013742 |—» G%Z%enl%ﬁéxc;c

add esp, 8

Callee

push ebp
. — Restore context

ret ~ Global mutex release

void myfnc(...) {

_Lookup original callee




Demo time!

* This demo is just for “educational purposes”




Practical instrumentation

What we saw:

- Function recognition

« Based on stack parameters
- Assume “strcmp’-like function is being used and look for it

- Accounting

« Data logging for later analysis
— Actuation

* Modify behavior on the fly

- Just a matter of changing return value. Function is nullified.



Advanced instrumentation

Show me more! What else can we do?

- Advanced object analysis: Dump data from C++
objects and C/C++ structs

- De-instrument uninteresting functions

* The overhead is noticeable

 This can be tricky, we don't want to lose data!
- Look for patterns across calls

« Usually is more interesting to locate some functions for
later analysis than trying to get the good one

* | told you! It's not 100% automatic!



Example: std::string

* Analyze function parameters containing
std::string objects

- Important things to know: compiler, libraries ...

- In our example:

« MSVC compiler: Uses ECX as 'this' pointer

« MSVC stdlib: Stores short strings in place, large
strings in heap. Pointer at +4 offset.

- Others: Ability to inject tool at startup

Skipping demo for this one, sorry :(



Example: dynamic dehooking

* Analyzing function calls can be slow.

 |dea: remove hooks from uninteresting
functions

- Simple way to do it: create a criteria and dehook
functions matching/not matching it

- More complex: Retain some status

e Remove functions which do not match some
conditions many times

Go demo go!



Conclusions

* |t Is possible to automate some reverse-
engineering methodologies

* 'Smart’ enough to be used in production
* But where is the [imit?

- The tool is far from perfect
- Not suitable for API hooking
- Protected/obfuscated sources will kick us

| built myself a nice browser form grabber :D



Thank you!

Questions?



