

spin
Static instrumentation for

binary reverse-engineering

David Guillen Fandos

Tarragona – Spain

david@davidgf.net
davidgf.net – github.com/davidgfnet

Reverse-engineering

● What are we talking about?

– Discover how a software program works

– Figure out what it does

● Typically done using disassembler/debugger

Nothing new here!

Reverse-engineering

Sounds easy right?

Reverse-engineering

● Debugging/reading assembly can be tedious

– In fact it's boring

● In the past assembly was written by humans

Now compilers do all the work!!

● It's difficult to read their machine code but...

● They are predictable, respect call conventions
and interfaces...

Reverse-engineering

So... Why don't we take advantage of this to
ease our lives?

Could we do automatic-reverse engineering?

Let machines do all work!

Automatic reverse-engineering?

● Is it even possible?

● How much
automatic is it?

● Can it replace a
'human'?

Machines, you know...

Automatic reverse-engineering!

● Let's create a tool that does all the dirty job we
usually do by hand!

● How?

Let's use binary instrumentation

Wait, what da heck is binary instrumentation?

Binary instrumentation 101

● Binary instrumentation is a technique which
allows to modify and rewrite existing binaries

– We can modify their behavior at runtime

– Typically used in a non-intrusive way: just
analyze the program

– At assembly level: cannot reverse to high
level languages

● Many tools available:

 Pin, DynamoRIO, Valgrind ...

Binary instrumentation 101

● Works by injecting
instructions in the
original code

– Rewrites code on
demand

– Similarly as Virtual
Machines do

● It is possible to add user
code on instruction basis,
basic block, etc.

...
mov edi, esi
lea (esi,eax,4), ecx
call instrument_func_pre
mov edi, (ecx)
mov (ecx+4), edi
inc edi
call instrument_func_pre
mov edi, (ecx+4)
...

x86 example: instrument all memory
stores (added instructions in red)

Binary instrumentation 101

● What industry and professionals use binary
instrumentation for?

– Performance evaluation

– CPU emulation

– Tracing and profiling

– Many others...

● What do we use it for...?

Binary instrumentation 4 hackers

● How can we use it for our purposes?

– Create complex conditional breakpoints

● Just like debugger does, evaluate something and
trigger 'break'

● This is cool cause debuggers usually only do stateless
conditions

– Create app tracing/logging outputs

● Dump any interesting info to a file

● We can also conditionally dump interesting info

– Modify the application behavior

● We can modify memory and registers

Binary instrumentation 4 hackers

● Let's try to think as if we were the App coder

● We probably want to work on function basis

– Look for relevant functions

● By using complex breakpoints (retaining status across
executions) it is possible to characterize functions

● We can have a look at the stack too!

– Generate some log with this info

● We can discard 99% of “boring” functions in the binary

I wrote my own tool to do some of this...

Spin: Static instrumentation

● A tool for instrumenting at function granularity

– Runs in application virtual memory space

– Allows us to receive function parameters

– Optionally we can modify return values

– We rely on compilers respecting calling
conventions (true for C/C++)

...
push 0x67
push eax
call 0x4013742
add esp, 8
...

...
push 0x67
push eax
call 0xac00de0
add esp, 8
...

Spin: Static instrumentation

● Works by patching
call instructions

– Only support for
immediate encoding

– This way the
instrumentation is
static

– Similar same
principle as DLL
hooking

● Calls get redirected
to user defined
functions

– DLL injection

– It is possible to
hook/dehook specific
instructions or areas

– Choose modules to
patch (avoid patching
system/standard libs)

Spin: Static instrumentation

Target App.

MyApp.exe

Somelib.dll

Spin.dll

spin.exe

Spin.exein
je

ct
s

patches

Spin: Static instrumentation

Global mutex lock
Save context

push 0x67
push eax
call 0x4013742
add esp, 8

void myfnc(...) {
 ...
}

user c
allback

Lookup original callee
Restore context

Global mutex release

push ebp
...
ret

Caller

Callee

Demo time!

● This demo is just for “educational purposes”

Practical instrumentation

What we saw:

– Function recognition

● Based on stack parameters

– Assume “strcmp”-like function is being used and look for it

– Accounting

● Data logging for later analysis

– Actuation

● Modify behavior on the fly

– Just a matter of changing return value. Function is nullified.

Advanced instrumentation

Show me more! What else can we do?

– Advanced object analysis: Dump data from C++
objects and C/C++ structs

– De-instrument uninteresting functions

● The overhead is noticeable

● This can be tricky, we don't want to lose data!

– Look for patterns across calls

● Usually is more interesting to locate some functions for
later analysis than trying to get the good one

● I told you! It's not 100% automatic!

Example: std::string

● Analyze function parameters containing
std::string objects

– Important things to know: compiler, libraries ...

– In our example:

● MSVC compiler: Uses ECX as 'this' pointer

● MSVC stdlib: Stores short strings in place, large
strings in heap. Pointer at +4 offset.

– Others: Ability to inject tool at startup

Skipping demo for this one, sorry :(

Example: dynamic dehooking

● Analyzing function calls can be slow.

● Idea: remove hooks from uninteresting
functions

– Simple way to do it: create a criteria and dehook
functions matching/not matching it

– More complex: Retain some status

● Remove functions which do not match some
conditions many times

Go demo go!

Conclusions

● It is possible to automate some reverse-
engineering methodologies

● 'Smart' enough to be used in production

● But where is the limit?

– The tool is far from perfect

– Not suitable for API hooking

– Protected/obfuscated sources will kick us

I built myself a nice browser form grabber :D

Q&A

Thank you!

Questions?

