
The Boomerang
EFFECT

Using Session Puzzling to Attack Apps from the
Backend

Shay Chen, CTO
@sectooladdict

Hacktics ASC, Ernst & Young

November 22nd, 2013

https://twitter.com/sectooladdict

Page 2

About

► Formerly a boutique company that provided

information security services since 2004.

► As of 01/01/2011, Ernst & Young acquired

Hacktics professional services practice, and

the group joined EY as one of the firm’s

advanced security centers (ASC).

Page 3

Introduction to
Session Puzzles

Page 4

Session Puzzles – What’s That?

► Session Puzzles are application-level vulnerabilities that

can be exploited by overriding session attributes

► The “Session Puzzling” exploitation process is referred

as “Session Variable Overloading” by OWASP.

► Potential exploitation examples:

► Bypass authentication and authorization enforcement

► Elevate privileges

► Impersonate legitimate users

► Avoid flow enforcement restrictions

► Execute “traditional attacks” in “safe” locations

► Affect content delivery destination

► Cause unexpected application behaviors

Page 5

Indirect Session Attacks – Why Bother?

► Since the concept of indirect attacks suggests

that the target is not attacked directly, the model

itself has several benefits:
► Low probability for code level mitigations.

► Avoid detection by following a “valid” behavior pattern.

► Furthermore, since the exposure enables unique

attack vectors, the attacker can exploit new

exposures:
► Gain control over a valid account or even an application without

sending a single malicious input.

► Perform new types of logical attacks.

Page 6

Session Puzzling - Example (1 of 3)

► Starting a password recovery process with a valid user

Page 7

Session Puzzling - Example (2 of 3)

► The process populates the session memory with the

username value…

Page 8

Session Puzzling - Example (3 of 3)

► Tthe attacker directly access an internal page that relies

on the session-stored username variable

Page 9

Traditional Attack
Vectors

Page 10

“Traditional” Application Attack Vectors

► Malicious Inputs

► Forceful Access

► Consuming Resources (DoS)

► Enumeration

► Redirection

► Abusing Features

► Etc

Page 11

… And more

Page 12

Common Attack Vector Traits

► Directly attack the target through payloads,

redirection or direct access to resources.

► Straightforward detection and exploitation

methods.

► Potentially “Noisy”: might be detected by various

mechanisms, due to abnormal and sometime

intrusive behavior.

Page 13

Session Puzzling Traits Comparison

► Access a sequence of entry points in a pre-planned

order, random order or timely manner.

► “Indirect” - Attack a target indirectly by “composing” a

back-end hosted “payload” that is delivered to it indirectly

through a relatively trusted source – the session.

► “Silent” – ideal for stealth attacks and avoiding security

mechanisms that validate input.

► “Unknown” – exploiting scenarios that are currently rarely

mitigated.

► “Obscure” – inconsistent detection and exploitation

methods.

Page 14

Session Puzzle
Variants

In the Wild

Page 15

A Couple of Prominent Examples

► Oracle E-Business Suite

► Authentication Bypass

► Privilege Escalation and Admin Takeover

► Sony Network Account Service System

► Reset passwords of Sony Playstation users

► Undisclosed Vulnerabilities in Banks

► Skip verification phases in multiphase

transactions

http://www.hacktics.com/content/advisories/AdvORA20091214.html
http://www.hacktics.com/content/advisories/AdvORA20091214.html
http://www.hacktics.com/content/advisories/AdvORA20091214.html
http://seclists.org/fulldisclosure/2013/Jun/229

Page 16

Insurance Company Site Corruption

► 2008: An attacker gains remote control over the

administrative interface of a European insurance

company, and starts corrupting the web site content.

► An investigation performed revealed that the attacker

gained control by crawling the entire application tree

twice, using paros proxy, prior to accessing the

administrative login page (which resided in a trivial URL

address).

► The act of crawling automatically submitted contact-us

forms, which populated the attacker’s session with values

that were used by the administrative application for

authentication enforcement.

Page 17

European Bank Back-Door Sequence

► 2007: A session puzzle exposure was detected in a

security assessment of a European banking application.

► The vulnerability enabled the attacker to gain complete

control over the system (by activating a dormant feature),

by accessing a sequence of seven different pages.

Page 18

The Session Mechanism

Page 19

The Session Mechanism

► The process of session identifier generation and association

Initial
Browser
Access

Session
Identifier

Generation

Session
Memory

Association

Session
Identifier
Storage

Session
Identifier
Reuse

Web Server

Session Memory

Session ID

Abcd123

Cbcr321

Memory Allocation

0xAA…

0xBB…

 Set-cookie: SID=abcd123

Cookie: SID=abcd123

Domain Cookie

SID=Abcd123

Initial Access to the Domain

Page 20

The Session Lifespan in Web-Apps

► Initial browser access to server -> generation of a

new session identifier.

► The session identifier is returned to the browser,

usually in a “set-cookie” response header.

Page 21

The Session Lifespan in Web-Apps

► The browser stores the identifier in a domain cookie,

► Domain-specific cookies are sent to the domain in every

request (including the session identifier).

► The server uses the session identifier to “associate” the

browser instance with the memory allocation

► Associated memory can store flags, identities, and

browser instance specific data.

Page 22

Session Stored Values

► Since sessions enable applications to “track” the

state of browsers, they are used to store a variety

of browser-instance related values:

► User Identities (user identifiers, usernames, email

addresses, social ID numbers, etc.)

► Permissions (roles, resource lists, etc.)

► Flags (Flow flags, State flags, etc.)

► Input (Especially input from multiphase processes)

► Results of Operations, Queries, and Calculations

► Etc.

Page 23

Session Puzzling
Sequences

Page 24

Session Puzzling Attack Sequences

► As mentioned earlier, session puzzles can be

exploited in a variety of ways. Common instances

include (but not limited to):

► Authentication Bypass via Session Puzzling

► Impersonation via Session Puzzling

► Flow Bypass via Session Puzzling

► Privilege Escalation via Session Puzzling

► Content Theft via Session Puzzling

► Indirect “Traditional” Attacks

Page 25

Authentication Bypass via Session Puzzling

► Authentication mechanisms that enforce authentication by

validating the existence of identity-related session

variables can be bypassed by accessing public entry

points that might populate the session with identical

values (registration modules, password recovery modules,

contact-us forms, question challenges, etc.).

Session Memory

Username Session Variable

Uncontrolled Session Object

Population Session Object Verification

Registration, Recovery, Etc Internal (Authenticated)

Content

Page 26

Impersonate Users via Session Puzzling

► Applications that rely on the session for storing user

identities can be misled by malicious users that “overrun”

their own identifying values with those of other users,

through the use of modules that temporarily populate the

session with client-originating identity values.

 Session Memory

Identity Session Variable

Uncontrolled Session Object

Population Session Object Verification

Registration, Recovery, Etc Private User Content

Page 27

Flow Bypass via Session Puzzling

► Flow enforcement mechanisms (in processes such as

password recovery, registration and transactions) that rely

on identical session flags, can be bypassed by activating

the processes simultaneously (for example, performing

the registration process in parallel to the password

recovery or transaction, to enable “skipping” phases).

Session Memory

Flow & State Session Variables

Uncontrolled Session Object

Population Session Object Verification

Simple Flow Enforced Process Sensitive Flow-Enforced

Process

Page 28

Privilege Escalation via Session Puzzling

► Attackers might be able to elevate their privileges in the

application by accessing entry points that populate their

session memory with additional values, permissions and

flags, which might be required by other modules that were

previously inaccessible.

 Session Memory

Username Session Variable

Uncontrolled Session Object

Population Session Object Verification

Registration, Recovery, Etc Internal (Authenticated)

Content

Page 29

Content Theft via Session Puzzling

► Applications use a variety of content delivery methods to

keep in touch with their consumers (SMS, email, etc.).

Attackers can use session puzzles to initiate content

delivery processes and affect their destination (for

example, affect the destination of an SMS password

recovery by simultaneously registering with a new

number).

Session Memory

Delivery Destination Variable

Uncontrolled Session Object

Population Session Object Usage

Entry Points that can affect

delivery variables

Content Delivery Modules

Page 30

Indirect “Traditional” Attacks

► The same “indirect” method used in the previous

instances can also be used to execute injections,

reflections, manipulations and other “traditional” attacks

in locations that were previously considered safe, simply

by affecting session values which are used in entry points

that treat their origin as trusted (and thus avoid validation).

Session Memory

Session Variables

Temporarily invalidated

Session Object Population Session Object Usage

Entry Points that store input in

the session

Potentially Vulnerable Modules

that “trust” session values

Page 31

Potential Entry Points

► Login modules with premature session value population.

► Registration, password recovery and recovery challenge

modules.

► Multiphase processes.

► Contact forms.

► Test pages and obsolete content.

► Security mechanisms.

► Any module that stores values in the session.

► Etc.

Page 32

Session Puzzles FAQ

► Should session puzzles be considered new vectors?

► Yes and No. It’s a new way to perform unique logical attacks and

an alternative method to execute traditional attack vectors.

► How session puzzling differ from other methods?

► The testing perspective enables attackers to compose the attack

pattern in the back-end.

► The back-end stored data can be used to attack any entry point

that relies on it, even if it is not affected by input.

► Which applications might be vulnerable?

► Any application or system that tracks consumer “state”, not just

web applications.

Session Puzzling WALKTHROUGH

Identify
Input Entry

Points

Identify
Server Side

Input
Storage

Identify
Potential

Consumers
of Server

Side Stored
Input

Identify
Restrictions
that Rely on
the Server

Data

Execute
Indirect
Effect

Sequences

Page 34

Temporal Session Race
Conditions

Page 35

The Lifespan of Session “Leftovers”

► The lifespan of session variables might vary in the context

of a module:

► The content of the session might be initialized in the beginning of

the module, a typical behavior in the following:

► Logout modules

► Login modules

► The content of the session might be initialized at the end or the

middle of the module:

► Logout modules

► The code sections of security mechanisms that deal with failures

(including login failures, security events, etc.)

► The entire session

Page 36

The Lifespan of Session “Leftovers”

► Furthermore, in addition to the previously described

scenarios, the lifespan of specific session variables might

be limited in additional ways:

► The content of a session variable might be initialized in certain

phases of a multiphase process:

► State flags

► Variables used for calculation, identity storage, etc.

► The content of a session variable might be initialized if a certain

criteria is met (the process failed or successfully completed,

exceptions did not occur, etc.).

Page 37

TSRC Exploitation

► Definition: a combination of attacks meant to enhance the

consistency of exploiting session-level race conditions.

► In order to make the exploitation consistent, we will need to

artificially create that which is missing… Latency.

► Abusing the session variables will still require the exploitation

request to be sent immediately after the request/s meant to

populate the session and cause the latency.

Page 38

Intentional Latency Increment

► The solution to exploiting session race conditions with

consistency lies in extending the productive latency,

artificially increasing the odds for the session manipulation

success.

Productive Latency

Page 39

Intentional Latency Increment, Cont.

► An increment in the length of the session variable lifespan

will directly increase the chances of abusing it…

► But how can we cause an increment in the execution

latency of specific lines of code?

++ ?

Page 40

ADoS & Productive Latency

► The ADoS attack must affect the lines of code between

the session population and the session invalidation more

then it affects the rest of the code.

► For example, a denial of service attack that targets the

web server is inefficient (since all the code is affected)

while a denial of service attack that targets the database

(and thus, the database access code) might be.

Database

Code

Session

Variables

Page 41

Temporal Session Race Conditions

Productive Latency

2

1

3

4

► The unnecessary / premature session variable must be

granted a lifespan long enough for bypassing the session-

level validation.

Page 42

► RegEx DoS

► Send Regular Expression DoS payloads to the target module, in

order to increase the latency of validations that follow the session

value population.

► http://www.youtube.com/watch?v=3k_eJ1bcCro

► Connection Pool Consumption / Occupation

► Intentionally “consume” all the available connections in the

connection pool, in order to delay database operations in a target

entry point.

► http://www.youtube.com/watch?v=woWECWwrsSk

Initial Samples of Layer Targeted ADoS

http://www.youtube.com/watch?v=3k_eJ1bcCro
http://www.youtube.com/watch?v=3k_eJ1bcCro
http://www.youtube.com/watch?v=3k_eJ1bcCro
http://www.youtube.com/watch?v=3k_eJ1bcCro
http://www.youtube.com/watch?v=3k_eJ1bcCro
http://www.youtube.com/watch?v=woWECWwrsSk

Page 43

► RegEx Dos Payloads can increase the latency of

validation and search mechanisms. For example:

► RegEx: ([a-zA-Z0-9]+)*

► Input: Admin, aaaaaaaaaaaaaaaaaaaaaaaaaa!

Increasing Latency with RegEx DoS

Page 44

► Occupying connections will guarantee that code, which

requires a database connection, will experience some

latency.

Occupying Connections to Increase Latency

Delayed until a connection is released

Page 45

Occupying Connections to Increase Latency

► “Session KeepAlive” – a sample tool that can exhaust the

connection pool:

Page 46

► Intentional Execution of Complex Queries

► Access entry points that execute resource-consuming queries, in

order to delay the database responses.

► Shared Backend DoS

► Perform ADoS on a web site that consumes services from a

backend server shared by the target web site, effectively

increasing the response time of the shared backend server.

Samples of Layer Targeted ADoS

Page 47

Intentional Execution of Complex Queries

2

3

4

5 Productive Latency

Login Module

Internal Module

1

Query Module

The
Automation

Issue

Page 49

The Numerous Potential Sequences

► The number of potential vectors to test can

become overwhelming

► Different Sequences

► Different Inputs

► Authentication Requirements

► Token Requirements

► Process Dependencies

► Deprecated Values

Diviner
An Active Information Gathering Framework

 Predicting Server-Side Content-

Storage Structure and Effect

Introducing

https://code.google.com/p/diviner/

https://code.google.com/p/diviner/

Page 51

ZAP’s Request History

Page 52

Exploring Different Paths of Execution

Behavior in Different Authentication Modes and History Perquisites

Request#1

Request#2

Login-Request

Request#4

…

Source

Entry Point

Target Entry

Point

No Login

Login First

Login After

Source EP

Login

Mode

No History

Partial

History

Full History

History

Access

History

Optional

Login

No History

Required

History

Target

History

Start

Result

Analysis

Page 53

Exploring Different Paths of Execution

 Behavior With Different Session Cookies, Identifiers and Tokens

Use Updated

Cookie

New

Session

Cookie

New Page

Specific

Parameter Update

Parameter

Access

Entry Point

New

AntiCSRF

Token

Use Original

Cookie

Use New

Token
New Page

Specific

Parameter Update

Parameter

New

AntiCSRF

Token Use New

Token

Scenario

Execution

Scenario

Execution

Page 54

Behavior Isolation

Behaviour

Name

ID

Input Reflected from Variable 1

Input Reflected from Session 2

Input Reflected from Database 3

Input Stored in Server Variable 4

Input Stored in Session Variable 5

Input Stored in Database Table 6

New Cookie Value 7

... ...

Page 55

Visual Input/Output/Effect Correlation

Page 56

Source Code Divination Accuracy

... ASP.Net

Code

JSP Code Code

Description

ID

String input$$1$$ =

Request[“##1##”];

String input$$1$$ =

request.

getParameter(##1##);

Read Input to Variable 1

Session.Abandon(); session.invalidate(); Invalidate Session 2

… request.getSession(true); New Session Identifier 3

Response.Cookies("##1#

#").Value = "val";

Cookie cookie = new Cookie

("##1##",val);

response.addCookie(cookie);

New Cookie Value 4

SqlConnection conn =

new SqlConnection(X);

Class.forName(DriverClassName);

Connection conn =

DriverManager.getConnection(X);

Get Database Connection 5

...

Page 57

Source Code Divination Accuracy

1%

40%

70%

90%

99%
Default

Probability

Rank Code

Type

Code

ID

Behavior

ID

50% 1010 1 3 7

70% 10040 1 4 7

40% 5550 2 2 7

90% 2010 1 1 6

80% 10000 2 5 6

...

Page 58

Verification Process and Probability

1%

40%

70%

90%

99%
Current

Probability

Rank Code

Type

Code

ID

Behavior

ID

70% 1010 1 3 7

60% 10040 1 4 7

80% 5550 2 2 7

90% 2010 1 1 6

80% 10000 2 5 6

...

For each unique entry point / request, the probability for the

existence of specific lines of code is adjusted according to the results

of various behavior specific confirmation processes.

Previous session redirects to login after set-cookie instruction?

Behaviour7 -> CodeId2 +40%, CodeId3 +20%, CodeId4 -10%

Page 59

Source/Target Code Correlation

Risk Mitigation

Page 61

► Avoid storing unnecessary values in the session.

► Avoid using session variables with identical names in

different modules, multiphase processes, and particularly

in public vs. private entry points.

► Store objects in the session instead of variables. The

name of the objects should include the origin process /

module.

► Don’t use the session as a temporary container for values.

► Perform validations on session originating values before

using them in the application code.

Session Puzzling & TSRC Mitigation

Summary

Page 63

The Diviner Project

► Homepage:https://code.google.com/p/diviner/

► OWASP ZAP extension (v2.0+), requires Java 1.7

https://code.google.com/p/diviner/
https://code.google.com/p/diviner/
https://code.google.com/p/diviner/
https://code.google.com/p/diviner/

Activating the Diviner Extension in ZAP

Page 65

Additional Resources

► Session Puzzling Original Concept: Whitepaper

► Session Puzzling Demo Videos: Hacktics Youtube

Channel, Oracle E-Business Suite SP Demo

► OWASP ZAP: https://code.google.com/p/zaproxy/

► OWASP Classification: Session Variable Overloading

► Training/Testing Platforms: Puzzlemall

► Posts on session puzzling / session race conditions:

Articles, Presentation 1 (PHP), Presentation 2

► Posts on divination attacks and structure prediction:

Articles, Presentations, Videos

https://puzzlemall.googlecode.com/files/Session Puzzles - Indirect Application Attack Vectors - May 2011 - Whitepaper.pdf
http://www.youtube.com/user/EYHASC
http://www.youtube.com/user/EYHASC
http://www.youtube.com/user/EYHASC
http://www.youtube.com/user/EYHASC
http://www.hacktics.com/content/advisories/AdvORA20091214.html
http://www.hacktics.com/content/advisories/AdvORA20091214.html
http://www.hacktics.com/content/advisories/AdvORA20091214.html
https://code.google.com/p/zaproxy/
https://www.owasp.org/index.php/Session_Variable_Overloading
https://code.google.com/p/puzzlemall/
http://sectooladdict.blogspot.co.il/2011/09/session-puzzling-and-session-race.html
http://www.stevenroddis.com/presentations/session-puzzling-and-flow-bypass-attacks-on-php-sessions/
http://www.stevenroddis.com/presentations/session-puzzling-and-flow-bypass-attacks-on-php-sessions/
http://www.stevenroddis.com/presentations/session-puzzling-and-flow-bypass-attacks-on-php-sessions/
https://puzzlemall.googlecode.com/files/Temporal Session Race Conditions (TSRC) - Sept 2011 - Presentation.pptx
https://puzzlemall.googlecode.com/files/Temporal Session Race Conditions (TSRC) - Sept 2011 - Presentation.pptx
http://sectooladdict.blogspot.co.il/2012/07/the-diviner-clairvoyance-in-digital.html
http://2012.zeronights.org/includes/docs/Shay Chen - The Diviner - Digital Clairvoyance Breakthrough - Gaining Access to the Source Code & Server Side Memory Structure of ANY Application.pdf
http://www.youtube.com/watch?v=qCSHPhuWFFU

EY Advanced Security Centers

• Americas

• Hacktics IL

• Houston

• New York

• Buenos Aires

• Asia Pacific

• Melbourne

• Singapore

• EMEIA

• Dublin

• Barcelona

Questions?
Shay Chen (@sectooladdict)

https://twitter.com/sectooladdict
https://twitter.com/sectooladdict

