
A Myth or Reality – BIOS-based Hypervisor
Threat

Special research prepared by Rubos, Inc. team
(We do independent research on security matters in various
domains)

Prepared for DeepSec 2014
Speaker: Mikhail Utin, PhD, CISSP
mikhailutin@hotmail.com

(Questions will be answered after the presentation. Please,
submit them to the speaker in writing)

Copyright © DeepSec GmbH & Rubos, Inc., 2014

Myths and Reality
Myths and reality intersect and interchange.
Greek myth of Achilles – in modern terms is a “search of an

ultimate protection and creation of single point of failure”

Fig.1. Thetis Dipping the Infant Achilles into the River Styx (ca. 1625)

Modern Myths

- Ghosts, witches, witchcraft; Ghost hunting have been
entertaining but unsuccessful – none apprehended and caged
for public exposition ; for believers- reality, for others – a myth

- UFO and UFOlogy – a sort of ghost hunting; believers have a fun
and consider a reality, but yet a myth – no alien is available for
public demo

- IT Management – some see as reality, but in cases like Case #3
below – just a myth

- Information Security – do we have an official myth or a ghost?
- A myth about Malicious Hypervisor (Russian Ghost) appeared on Russian

hackers’ site at the end of 2011. It has all myth’s attributes. There were
rumors about the post, and the storyteller described it as reality.
However, neither he nor somebody else got and caged the ghost for
public exhibition

Russian Ghost Myth – Case #1 and Following Research

We believe that it was real or may still exist, and we possibly know where it
was born and eventually escaped from.

Our research is about three cases. We are interested to identify not only the
“percent of reality”, but also how dangerous it is, how to hunt on, and how to
protect from:

Case #1 - Russian research on Malicious BIOS Loaded Hypervisor
(approximately 2007 – 2010 years) posted at the end of 2011

Case #2 - US Michigan University Virtual-Machine Based Rootkit research
which was done approximately in 2005 – 2006 years (published 2006)

Case #3 - US Michigan University IPMI/BMC (Intelligent Platform
Management Interface/Baseboard Management Controller) vulnerability
research of approximately 2012 – 2013 (published 2013) .

Research Direction

Fig. 2. The process of our research

Case #1 - Russian Ghost – a Real Post and a Myth about
Malicious BIOS Loaded Hypervisor (MBLH) (1)

- Was accidently found in the middle of 2012
- Contains various topics (not technical only) and details
- Has been published on 12/26/2011
- Written in Russian and published on Russian hackers’ site
 If it were a scam with the intention of misleading, it would be
published in English. The fact that he post is almost unknown
relates to its language.

We translated the text and its summary is published on DeepSec
site. Please, see it. Complete text will be available as well.

Reference: Chinese Add-ons: True Stories of virtualization,
information security and computer spying; post on
http://xakep.ru/articles/58104/ ; 12/26/2011

Translated from Russian, Copyright © DeepSec, GmbH and
Rubos, Inc., 2014.

http://xakep.ru/articles/58104/
http://xakep.ru/articles/58104/

Case #1 – Malicious BIOS Loaded Hypervisor (2)

The project:
Typical Russian computer science project – to develop high performance
computer system; no association with information security. The customer –
Kraftway, one of biggest Russian IT companies working closely with Russian
government. It supplied Intel motherboards for the project.
Quote: “I decided to use new Intel processors with the support of hardware
virtualization even before the official announcement (in early 2007), and to
create a unified computing system … It required writing compact hypervisor
with non-standard functionality. …It is essential to boot the OS on already
virtualized platform, so even the first commands of the OS boot loader
would be executed in a virtual environment. Then the hypervisor has to
virtualize the CPU real mode and all other operating modes. … it was
overstatement to call that as "hypervisor", I began to use the term "hyper-
driver”.
“ …thanks to the cooperation with the company Kraftway I had access to
pre-production models of processors and motherboards…”
Comment: pre-production boards were from Kraftway company and labeled
“Assembled in Canada”.. They have been used for the design phase.

Case #1 – Malicious BIOS Loaded Hypervisor (3)

The problem:
“I had to assemble a system based on first production motherboards, which
had just appeared. However, the system did not work. … I began to
investigate and finally realized that my system hangs while executing
hardware virtualization commands … and finally get the BIOS code from the
official Intel website and reloaded it in the motherboard, and then system
started working.”
The reason:
“China-made motherboard started to work only when I uploaded the BIOS
taken from Intel site. … It became clear that the boards from China contain
additional software modules, embedded in the BIOS, and the standard
analysis software does not see them. Apparently, they also worked with
hardware virtualization and thus were able to hide the true contents of the
BIOS. … Chinese boards had two software systems working simultaneously
on the same hardware virtualization level, which does not allow sharing of
resources.” By “two software” he means his “hyper-driver” and embedded
malicious hypervisor.

Case #1 – Malicious BIOS Loaded Hypervisor (4)

Comment:
 Here is very significant finding – there is malicious hypervisor embedded in
BIOS, and which utilizes hardware virtualization Intel CPU capability. It was
possible to identify that because there was a conflict in sharing resources.
The developers of Malicious BIOS-Level Hypervisor (MBLH) did not expect
that the system will run the second virtualization software on the same level.
We found official Intel documents that the company indeed has assembly
and testing facility (CD1) in Chengdu, China opened in 2005, and another
factory opened in Chengdu in 2007 (CD6). However, in Canada we found
only Flash Memory group in Vancouver/BC, which is unlikely being involved
in assembly process. Thus, there are some doubts concerning the label on
the sample boards “Assembled in Canada”.
The home of the MBLH:
 “… it was necessary to begin to figure out in which of the flash chips was a
software module that works with hardware virtualization. … I was not even
surprised when found out that the "add-on" hypervisor starts working just
after reloading software in flash memory of BMC.”

Case #1 – Malicious BIOS Loaded Hypervisor (5)

Where MBLH lives:

IPMI - Intelligent Platform Management Interface
BMC – Baseboard Management Controller

Case #1 – Malicious BIOS Loaded Hypervisor (6)

Notes about IPMI and BMC implementation:
- IPMI is core platform for server local and remote management,
- BMC is core controller in IPMI implementation and has its own BIOS
- As of the time of Case #1 research, BMC was integrated in so named South
Bridge (I/O Controller Hub 631xESB/632xESB or ESB2)
- There are three flash memory BIOS devices – system, BMC and supporting
I/O controllers
- BMC BIOS software is encrypted and decrypted internally before
execution; that was found by the scientist in Intel documentation. Thus, it
cannot be reverse engineered other that when it is decrypted in BMC RAM
for execution.
-BMC is connected to the system bus and thus having direct access to the
system RAM. IPMI and BMC have complete control of the computer
including power cycling and rebooting.
- By Russian law, encryption of more than 40 bits (256 bit in BMC) is
prohibited in imported equipment.

Case #1 – Malicious BIOS Loaded Hypervisor (7)

When MBLH got in BMC BIOS:
Quote: “ … in new series of server boards … there are "add-on" programs in

flash memory working with BMC and executed on the CPU, and these
programs work with CPU hardware virtualization level.

… Images of flash memory software from Intel's website do not contain such
software modules, thus software modules preventing my hyper-driver
from working properly were illegally embedded in the motherboard
flash memory during the production stage.”

Comment: This is, in general, the author’s conclusion concerning technical
side of the first phase of his research. His conclusion about “ … were
illegally embedded … during the production stage” is based on the
believe in “Assembled in China” label. However, such label does not
mean that BIOS alteration could not be done AFTER such boards left
China manufacturing facility, and outside of China.

Here we are – the first discussion of the concern in Russia:

Quote: “… I informed the management of Kraftway about the problem with
the BMC flash memory firmware and questionable, in legal terms, situation
with the new Intel chipsets and received rather expected response in the
style of "no buzzing, that may hurt business.“

Improvement of MBHL:

“ … however, continuing regularly run their system on new series of
motherboard shipments from China, and new samples. All samples
continued to work steadily. When I switched to the Chinese boards, I saw
more and more miracles. It seemed that colleagues from abroad are actively
improving the operations of their root hypervisor. Last shipments of
suspicious boards behaved almost normally.”

Bingo:

“… it happened what I was waiting for a long time - motherboards from new
shipment did not hang my hyper-driver at all. I was in doubt if I was paranoid
in my suspicions, but new case has strengthened my opinion.”

Case #1 – Malicious BIOS Loaded Hypervisor (8)

Case #1 – Malicious BIOS Loaded Hypervisor (9)

New virtualization feature – new outcome of MBHL case:
“… I started to work when it was revision 7 … in revision 11 conditions of
entry in virtual host for hardware virtualization have been improved
significantly … I added new features of the hardware virtualization in my
hyper-driver, and installed new chip set in standard boards from China, in
which everything had worked without any problems ... New features of the
equipment did not work.

I, resuming the experiments, moved new revision 11 chip set to Canadian
sample motherboards. And new features started working!

… there is only one conclusion possible that colleagues from abroad did not
know about the new revision of hardware virtualization.”

Final status:
“Already knowing how to deal with this problem, I downloaded in the
standard motherboard firmware for the BMC from Intel site. I was sure that
everything will work, but to my great surprise, it did not. Hanging was still
there. This was something new.”

Basically, it was “freeze of the code” – the end of the development, ready
for production!

Case #1 – Malicious BIOS Loaded Hypervisor (10)

Possible MBLH developer?
All boards – both testing and production came from the same source –
Kraftway company. How boards “Assembled in China” came in Kfaftway is
not known, and may be not from China at all. The company is, by the way,
one of leading IT companies in Russia, and thus is capable of high level
software development as well.
New method of catching MBLH:
Fixing by downloading new BIOS revision did not work anymore, and the
scientist decided to measure execution time of system commands in boards
from “China” and “Canada”. Below is the result “without MBLH”:

Case #1 – Malicious BIOS Loaded Hypervisor (11)
The second part of the experiment – with MBLH:

The Result of Analysis column says “Hypervisor is detected”. The execution
time has indeed significantly increased, but it is approximately 60 times
more for all tested commands! It is a bit hard to believe that MBLH software
utilizing hardware virtualization increased execution time of some commands
60 times!

Case #1 – Malicious BIOS Loaded Hypervisor (11)

Expressing concerns and presenting the case to various parties;
1. Intel representative in Russia – no response
2. FSB (Federal Security Services, former KGB) “Center for Information
Protection” (CIP) mid-level executives and specialists – misunderstanding
and almost no interest expressed.

3. FSB CIP second meeting – senior level executives and specialists - The
meeting turned into a lecture. … and finally answered many questions. At
the end of the meeting they thanked us, and said that the issue should be
investigated in the framework of special research.” Finally – the case is
dismissed.

4. To prove the case “…… I should write such a "add-on" myself. I would not
be able to put the "add-on" in the flash memory of the BMC, but can load
the code in the main BIOS. … My Last Judgment Day weapon will utilize the
"add-on" to kill the computer system by an external command … actually
perform single function task of wiping out BIOS flash chip when receiving a
command to destroy the system.” Finally he managed to show the demo to
GasProm (state oil and gas enterprise0) security team, but with the same
success as to others. Dismissed.

Case #1 – Malicious BIOS Loaded Hypervisor (12)
Conclusion

1. The post describes unique experience of identifying a malicious hypervisor, which
is loaded before OS bootup and right after system BIOS hardware initialization.
2. The post definitely raises some questions, because important technical information
concerning experiments is missed. However, considering the post contents, we give it
90% of chance being reality while leaving 10% to the benefit of doubt.
3. The author identified, while missing details, that the malicious hypervisor is
embedded in BMC BIOS. Last years’ research on modern exploits of IPMI and its
weaknesses completely correlates with that.
4. The author describes his experiments and the development and improvement of
MBLH up to the level when it cannot be identified even by running yet another
virtualization software on the same level.
5. Experiments with commands’ execution time to identify the existence of MBLH
are important but lacking details, which would lower our suspicion level.
6. The author’s ordeal while trying to convince authorities and technical professionals
is very typical and well known to security professionals.
7. While the author believes that there is “Chinese Hand” in altering BMC BIOS, we
have some doubts, because the label “Assembled in China” does not mean anything,
like the label “Assembled in Canada” where we did not find Intel facility related to
manufacturing and assembly process. By details of this case, MBLH might be
developed by Kraftway or FSB.

Case #2 – the US – Is where the Idea of Malicious Hypervisor
Came from?

Not too much known research with prominent sponsors:
Joined team from University of Michigan and Microsoft Research did
sponsored research “SubVirt: Implementing Malware with Virtual Machines”
which (quote) “was supported in part by National Science Foundation grants
CCR-0098229 and CCR-0219085, by ARDA grant NBCHC030104, by Intel
Corporation, and by Microsoft”.
What is ARDA? Would then ARDA be now DARPA? Yes, many thanks to
Wikipedia, ARDA = DARPA (Defense Advanced Research Projects Agency).
Therefore, a while before Russian scientist started fighting with a ghost
embedded in BMC BIOS, the foundation for malicious hypervisor has been
researched, and two proof-of-concepts implemented sometime in 2005 –
2006 years.
This research is very important to understand various aspects of now existing
problem of likely existing invisible malware and perspectives to mitigate that.

Case #2 - The Purpose of VMBR Research

Quote: “We evaluate a new type of malicious software that gains
qualitatively more control over a system. This new type of malware, which
we call a virtual-machine based rootkit (VMBR), installs a virtual-machine
monitor underneath an existing operating system and hoists the original
operating system into a virtual machine. Virtual-machine based rootkits are
hard to detect and remove because their state cannot be accessed by
software running in the target system.”
VMBR is different from MBLH, because it is not embedded in BMC BIOS but
loaded in RAM, and thus has different functionality. Just the first step …
Quote: “Our project which we called SubVirt, shows how attackers can use
virtual-machine technology to address the limitations of current malware
and rootkits.
…We show how attackers can install a virtual-machine monitor (VMM)
(comment: hypervisor) underneath an existing operating system and use that
VMM to host arbitrary malicious software. The resulting malware, which we
call a virtual machine based rootkit (VMBR), exercises qualitatively more
control than current malware, supports general purpose functionality, yet
can completely hide all its state and activity.”

Case #2 - Details of Ultimate Weapon Research

The research goals:
“We demonstrate that a VMBR can be implemented on commodity hardware
and can be used to implement a wide range of malicious services.”
“We show that, once installed, a VMBR is difficult to detect or remove.”
“We implement proof-of- concept VMBRs on two platforms (Linux/VMware and
Windows/VirtualPC) and write malicious services such as a keystroke sniffer, a
phishing web server, a tool that searches a user’s file system for sensitive data,
and a detection countermeasure which defeats a common VMM detection
technique.”
“Finally, we discuss how to detect and defend against the threat posed by
VMBRs and we implement a defense strategy suitable for protecting systems
against this threat.”

Case #2 – How to Control Guest OS

In “normal” virtual machine implementation there is no need for host OS to
completely control guest OS. However, VMBR requires that:
“ … One problem faced by VM services is the difficulty in understanding the
states and events inside the guest they are serving; VM services operate at a
different level of abstraction from guest software. Software running outside
of a virtual machine views low level virtual-machine state such as disk blocks,
network packets, and memory. Software inside the virtual machine interprets
this state as high-level abstractions such as files, TCP connections, and
variables. This gap between the VMM’s view of data/events and guest
software’s view of data/events is called the semantic gap.”
“Virtual-machine introspection (VMI) describes a family of techniques that
enables a VM service to understand and modify states and events within
the guest. VMI translates variables and guest memory addresses by reading
the guest OS and applications’ symbol tables and page tables. VMI uses
hardware or software breakpoints to enable a VM service to gain control at
specific instruction addresses. “

Case #2 – Design and Implementation Notes (1)

VMBR installation process (quote):
“In the overall structure of a VMBR, a VMBR runs beneath the existing
(target) operating system and its applications. To accomplish this, a VMBR
must insert itself beneath the target operating system and run the target OS
as a guest. To insert itself beneath an existing system, a VMBR must
manipulate the system boot sequence to ensure that the VMBR loads
before the target operating system and applications. After the VMBR loads,
it boots the target OS using the VMM. As a result, the target OS runs
normally, but the VMBR sits silently beneath it.” This process is different from
MBLH where the hypervisor is loaded from BMC and then boots the OS.
Malicious services (quote):
“Using our proof-of-concept VMBRs, we developed four malicious services
that represent a range of services a writer of malicious software may want to
deploy. We implemented a phishing web server, a keystroke logger, a service
that scans the target file system looking for sensitive files, and a defense
countermeasure that defeats a current virtual-machine detector. To develop
these services, we use the host OS as our attack OS (below):

Case #2 – Design and Implementation Notes (2)

Case #2 – Design and Implementation Notes (3)

Malicious services:
The authors of this research definitely went much further than we originally
discussed as malicious hypervisor and MBLH. They also introduced exploits
on the top of malicious hypervisor. That is actually going to the very end of a
system compromise.
Maintaining control – defending VMBR:
Quote: “ …The only time the VMBR loses control of the system is in the
period of time after the system powers up until the VMBR starts. if the BIOS
boots a program on an alternative medium, that program can access the
VMBR’s state.”
There are two measures to regain the control:
- Handling reboots by restarting the virtual hardware rather than resetting
the underlying physical hardware thus creating an illusion of reboot.
- Emulation of system shutdown by using ACPI (Advanced Configuration and
Power Interface) sleep states to switch hardware in lower power mode,
which look s like a shutdown while memory state is intact. The most
targeted systems like servers are really rear shutdown.

Case #2 – Design and Implementation Notes (4)

Evaluation of the implementation:
Quote: “This section evaluates the impact of a VMBR on a
system. We valuate the disk space used by a VMBR, the time to
install a VMBR, the effect of a VMBR on the time to boot the
target OS, the impact of a VMBR as viewed by a user, and the
effect of the memory space used by a VMBR.”
Comment:
The section contains interesting technical material, and could be
helpful in further research of MBLH case. However, the VMBR
research has been done on systems not yet supporting
hardware virtualization, so dependences and numbers will be
completely different for modern systems starting from 2007
year like in MBLH case.

Case #2 - Defending against VMBR (1)

This is possibly the most interesting part of this research – how the creators
of ultimate weapon suggest protecting against it. Quote: “In this section, we
explore techniques that can be used to detect the presence of a VMBR.
VMBRs are fundamentally more difficult to detect than traditional malware
because they virtualize the state seen by the target system and because an
ideal VMBR modifies no state inside the target system. “
There are two methods:
Security software below the VMBR:
1. To run a “detector” software below VMBR – by the VMBR concept, only
system BIOS is below, so this recommendation is not concrete.
2. Secure boot prevents loading drivers and other software modules not
having a “signature”, which compared with “platform key” in a firmware.
However, that is the function of boot loader to compare the key and
signatures, but one of the main functions of VMBR is the loader alteration.
Secure boot is actually above VMBR, not below.
3. Other methods are secure hardware, the boot from save media and
secure virtual machine monitor. All of them will try to boot by other than
affected hard drive. However, we’ve seen a malware which blocks any boot
but the hard drive and does not matter what is configured in BIOS.

Case #2 - Defending against VMBR (2)

Secure Boot – continue:
“Using a secure VMM, we implemented an enhanced version of secure boot
which can prevent VMBR installations. The goal of our secure boot system is
to provide attestation for existing boot components, such as the disk’s master
boot record, the file system’s boot sector, and the OS’s boot loader and also
to allow legitimate updates of these components. All attempted updates of
these components are verified (by checking the cryptographic signature)
before they are allowed to complete.”
Our opinion:
We see some inconsistency in this concept. When such “secure VMM is
installed? If before VMBR, that each computer system requires such
component. If after VMBR is installed first,it controls any other installations,
thus can prevent creating VMM on its own level. We, in general, disagree
with that anything could be installed below VMBR, because it is installed
right after BIOS hardware initialization and initial tests, and thus can control
any other installation.

Case #2 - Defending against VMBR (3)

Software above VMBR - many obstacles:
1. General obstacle to run security software above VMBR is, as discussed, its
position above and thus it is completely controlled by VMBR. However, if
VMBR utilizes all computer hardware resources, then (quote) “… timing
differences can be noticed by software running in the virtual machine by
comparing the running time of benchmarks against wall-clock time”.
The overhead in CPU, memory, hard drive could be measured, and then may
be altered by VMBR as well. However, external clock will deliver unaltered
time.
We would like to note here that such measurements require two computer
states – before and after VMBR installation, or two identical systems to
compare, or somehow disabling VMBR. We will discuss our experiments and
conditions of “overhead” testing below.
2. Another option is utilization of HIDS system which would test installed
software , for instance, I/O drivers for changes which required for
virtualization.

Case #2 - Conclusion

Case #2 goals:
- The design and implementation of Virtual Machine Based Rootkit, Implementation
of malware utilizing VMBR features, Evaluation of VMBR, Implementation on two
platforms, Detection and defense against VMBR.
The research and the paper representing it are perfectly done, and convincing that all
practical implementations worked according to the research theory and goals.
Our opinion:
Authors finally tried to downgrade potential threat of VMBR-like systems and leverage
a possibility to overcome it.
We do not share authors’ pessimism over VMBR deadly capabilities and optimism
over detection and defeat. “Russian Ghost” Case #1 perfectly correlates with VMBR
concept, and goes further by exploiting BMC capability to run malicious hypervisor
on the lowest level possible. We believe that such hypervisor could even run
before system BIOS thus virtualizing it and its functions.
By our opinion, there are two main results – the proof-of-concept and the
code of VBMR. The research has been done before IEEE symposium in May,
2006. Considering that the research described in “Russian Ghost’”Case #1
began in 2007 or later, there is complete time correlation. The concept and
the code could be used to move VMBR to the next level – BMC BIOS based
MBLH. The threat level thus has significantly increased.

Our Case – Global or Local Threat and Possible Implementation

The research in the Case #2 lowered our doubts that the Case #1 is a myth.
We see definite correlation and the development of initial idea of VMBR.
However, even if Case #1 were complete myth, sooner or later the idea of
VMBR would find its supporters and implementers in the form of MBLH.

In the following paragraph we would like to identify the place and the
vector of VMBR/MBLH threat. We will do our analysis bases on two already
discussed cases first, and then will review our conclusion considering the
Case #3, which follows.

Global or local threat? That is may be the most important question. It
depends on how easy is to deploy and to distribute the threat.

Our case – VMBR and MBLH Deployment

Case #2 (VMBR) does not consider any particular deployment rather than
RAM, while Case #1 (MBLH) pinpoints BMC BIOS. BMC BIOS has its own
firmware file, which is to be deployed together with others.
The entire BOIS file is signed by Intel QA, and downloaded from authorized
resource. Thus, it is very unlikely that official Intel BIOS file contains an
alteration, and more likely it happened after motherboard manufacturing,
or server assembly process.
We think that alteration process with associated logistics is very manual and
is done for particular targets. We do not see a possibility of mass production
of altered board to deploy around the globe.
So, it is very unlikely that a maniac hijacked Intel facility and spreads altered
software with the purpose of pressing a button “Die All”. However, the access
to data sources is very valuable in some cases.

Our deployment conclusion: it is more feasible to alter some motherboards
or servers targeting highly valuable data resources. Thus we dismiss the
global option and incline to consider local MBLH deployments

Our case – VMBR and MBLH Distribution

Distribution:
Computing resources with MBLH will be physically shipped to targets as the
first part of infiltration process. Then, utilizing MBLH resources and local
network vulnerabilities other servers could be hijacked and converted to
silent and invisible bots. Such process of searching and converting local
targets does not require external resources excepting sites for downloading
altered BIOS versions.
Our Case conclusion:
1. So far, based on what we know by two cases, we do not expect worldwide
distribution of MBLH infected computers because of high complexity of
BMC BIOS alteration process and deployment. Targeted “customers” may
receive a shipment with altered BMC BIOS, and thus entire local network
could be eventually hijacked.
2. Concerning uploading VMBR in a computer system RAM, Case #2
research did not really consider options. That could be local malicious
activity of IT personnel uploading VMBR from a CD-ROM, etc. In any case,
local uploading is really limited as means of VMBR distribution.

Case #3 – Widespread Distribution of Malicious Hypervisor via
IPMI vulnerability

Now is the Case #3 - we return to Case #1 but with different perspective.
Michigan University research “Illuminating the Security Issues Surrounding
Lights-Out Server Management” by Anthony J. Bonkoski, Russ Bielawski and
J. Alex Halderman. Their research gave us new information applicable to
already considered cases.
Quote: “This paper examines the security implications of the Intelligent
Platform Management Interface (IPMI), which is implemented on server
motherboards using an embedded Baseboard Management Controller
(BMC). We consider the threats posed by an incorrectly implemented IPMI
and present evidence that IPMI vulnerabilities may be widespread. “
“We analyze a major OEM’s IPMI implementation and discover that it is
riddled with textbook vulnerabilities, some of which would allow a remote
attacker to gain root access to the BMC and potentially take control of the
host system.
Using data from Internet-wide scans, we find that there are at least 100,000
IPMI-enabled servers (across three large vendors) running on publicly
accessible IP addresses, contrary to recommended best practice”.

Case #3 – Introduction and Related Topics

IPMI: Intelligent Platform Management Interface has been known since 1998,
is independent from OS and functions even when computer system is down.
For yet unknown reason, up until 2012 – 2013 IPMI insecurity was not
widely discussed, with the exception of our Case #1, when Russian scientist
pointed out to BMC embedded malicious hypervisor.
The research lists various known exploits, which could be installed in BMC.
Quote: “Malware residing on the BMC could be extremely difficult to detect,
since it sits at an even lower architectural layer than a BIOS or VM-based
rootkit (reference to VMBR)”.
It is considered as common sense security practice not to connect IPMI
devices (i.e. its network controller) to public network. However (quote)“…
we use data from Internet-wide surveys to reveal public IP addresses of over
100,000 IPMI devices, including more than 40,000 systems that our results
suggest are remotely exploitable.”
Quote:”…Instead of securing IPMI vendors do rather opposite: ”The
vulnerabilities we find, along with others previously found …, suggest that
some IPMI manufacturers are systematically failing to properly secure these
devices.”

Case #3 – IPMI Security Risks

All known BMC OS use Linux OS which as any requires security updates.
“IPMI malware carries similar threats (like BIOS) and is likely easier to
develop, since many BMCs run a standard operating system. BMC malware
would also likely be easier to install remotely, due to IPMI’s substantial
network-facing attack surface.”

Attack surface: IPMI (Supermicro Inc. implementation) has six TCP and UDP
ports for communication and management. Even if recommended separate
management network is used, there still is an opportunity to connect to
BMC exploiting various issues.

Authentication risks: Administrators tend to using default or the same
password on multiple servers. And IPMI device may use insecure password
storage. Thus, after compromising one system it is possible to get access to
multiple.

Case #3 – Attack Scenarios

1. Subverting the host system- by exploiting remote management capabilities
and thus accessing the most of server configuration
2. BMC spyware against host’s OS– Quote: “If the attacker can install
malware on the BMC, it would have a powerful vantage point for spying on
the system and its administrator.”
3. Persistent attack from BMC – Quote: “As the BMC operates independently
from the host’s operating system and CPU, it provides an ideal hiding place
for a stealthy, highly persistent rootkit….A BMC rootkit would survive
reinstallation of the host’s OS, or even complete replacement of the host’s
storage devices. … could even be designed to survive BMC firmware updates
by dynamically patching the new firmware.”
4. Attacking BMC from the host system – an attacker could re-flash the BMC’s
firmware from compromised host’s OS.
5. IPMI botnets – Quote: ”If widely used IPMI devices can be compromised
remotely, they can be leveraged to create large networks of bots. … the
system operator is unable to run normal malware detection and removal
tools within the BMC.“
We see that 4 out of 5 scenarios tightly correlate with the Case #1 claim that
malicious hypervisor had been embedded in BMC firmware.

Case #3 – Analysis, Attacks and Network measurements

Quote: “To explore the potential for BMC compromise, we analyzed an IPMI
implementation shipped by one large server manufacturer, Supermicro. …
We ultimately discovered a range of vulnerabilities, and we developed two
proof-of-concept exploits to demonstrate some of the most critical
problems.”
Vulnerabilities and associated attacks:
Insecure input validation, Shell injection vulnerabilities, Buffer overflow
vulnerabilities and Buffer overflow exploit.
(Quote) “ … These vulnerable firmware images apply to 135 Supermicro
product models. The problems may also affect IPMI devices from other
manufacturers that are based on similar ATEN firmware.”
Network measurements:
Quote: “… we used data from an Internet-wide network survey conducted in
May 2013”. While the search was limited to certificates’ analysis, the
authors were able to identify over 105,000 servers of major manufacturers
(Dell, Supermicro and HP) connected to Internet, and likely having
vulnerabilities.

Case #3 - The research conclusion

Quotes:
“… Since BMCs operate independently of the host system and CPU, cleverly
written malware running there could potentially reside undetected
indefinitely. Unfortunately, due to the closed nature of BMC firmware,
server operators have few avenues to defend themselves without vendor
assistance.”
” … We uncovered a wide range of vulnerabilities and demonstrated two
working attacks that allowed us to gain root shell access. These problems
pose an immediate threat to many systems in the field; we found over
40,000 devices similar to the one we analyzed visible on public IP
addresses.”
“…In the long run, securing remote management systems calls for a
defense-in depth approach. Vendors need to apply careful security
engineering practices, minimize attack surfaces, and help users ensure that
their systems are appropriately locked down and isolated from public
networks.”

Our Case #3 conclusion

1. The research radically changes our preliminary conclusion given in p.4.2.
Now, combining all three cases, we see global threat by VMBR/MBLH
distribution via IPMI vulnerability, which is the combination of very low
security of IPMI/BMC implementations and human factor – simply security
ignorance of IT personnel. Numbers shown in the Case #3 research are not
final, and may turn in to millions of ready for exploits servers.
2. We do not think that the situation will improve in near future, because of
costs of IPMI/BMC securing and required time. Neither we are optimistic
over the “human factor” and IT attitude.
3. We see that modern trend toward “cloud services” may affect overall
information security. Users of in most cases do not understand that “clouds”
are simply monstrous datacenters with thousands of computers, and all of
them serve users over Internet. Having thousands of opened Internet
connections, even with all security measures, represent high risk of one
exploited and then all infected over shared vulnerable management
network. Needless to say that such centers are very likely to have
management systems Internet connected as well.

Our Ten Cents to How to Identify MBLH Presence

We share the Case #3 opinion that identification from “below” simply does
not exist as VMBR/MBLH is always on the lowest level, for instance
embedded in BMC/IPMI.
Catching by 100% utilization and in “statistical net”:
1. Instead of measuring commands’ execution time (Case #1), use 100%
utilization (Case #2) and watch on software execution time.
2. We need to get two testing options – with or without MBLH. It is possible
only if computer system BIOS supports turning hardware virtualization on
or off. Not all chip and server vendors support that. Our Dell T105 AMD
Opteron based servers have virtualization always up – no BIOS settings for.
3. However, hardware virtualization will work if MBLH is not designed to
reside below system BIOS. In this case it will be able to alter BIOS function of
turning virtualization off.
4. We used supporting virtualization and BIOS settings Lenovo notebook
with Linux CentOS 6.6 OS installed on.
5. This computer system BIOS has two virtualization related options - Intel
Virtualization Technology (Disable/Enable) and Intel VT-d Feature
(virtualization technology support for direct I/O, Disable/Enable).

Our Ten Cents – Measurements and Statistical Net

No Virt. Virt.
Test # Time Dev (Dev)2 Test # Time Dev (Dev)2

31 19:54 1 1 41 19:57 5 25
32 19:49 -4 16 42 19:45 -7 49
33 19:55 2 4 43 19:50 -2 4
34 19:59 6 36 44 19:48 -4 16
35 19:46 -7 49 45 19:54 2 4
36 19:43 -10 100 46 19:40 -12 144
37 19:58 5 25 47 20:03 11 121
38 19:55 2 4 48 19:57 5 25
39 19:50 -3 9 49 19:59 7 49
40 20:00 7 49 50 19:49 -3 9

Mean: 19:53 Sum: 293 Mean: 19:52 Sum: 446

SD 5.4 SD 6.7

Our testing software “dowork” (it is available for public) does floating point
calculation driving CPU to 100% utilization. Each calculation cycle takes a few
seconds. We used 400 cycles to get statistically more stable results.
However, various OS processes created certain deviation, thus we used 10
tests to improve statistics in both cases when two virtualization options are
disabled and when enabled.
Our results presented in the following table where first four columns are for
the test with disabled virtualization and next four – with virtualization; Dev is
deviation, SD – standard deviation, time is “minutes:seconds” format.
We see that for both tests mean values are very close – 19:53 and 19:52.
Standard deviation in the case of enabled virtualization is higher, but
statistically both results are very close – SD is 5.4 and 6.7.

We did not find - statistically – the presence of a malicious hypervisor.

We think that such statistical testing approach on long running programs is
the only one way to overcome live OS variations in execution time and is
likely to identify the presence of a malicious hypervisor.

Our Ten Cents – Measurements and Statistical Net (2)

Our Ten cents – External MBLH Catching - SIEM

 There is one more potential opportunity to catch VMBR/MBLH. Modern
Security Information and Event Management System (a SIEM is not a luxury
anymore, but security necessity) may help to identify short and infrequent
connections of a malicious hypervisor via management or system network
interface to internal or external hosts. Basically, we are facing to find a
needle in a hay stock, but this a SIEM is for – logging random and seldom
events across entire network and systems and finding suspicious
connections. We did not implement such hunt simply because we do not
have servers with hardware virtualization support disabling functionality in
system BIOS, but we encourage the audience not to ignore such opportunity
if you have a few servers to experiment with and a SIEM in place.

Our research Conclusion

1. Case #1 – Russian mythical post. It is the only one but yet circumstantial evidence of
successful attempt to embed a malicious hypervisor in BMC BIOS software. We
consider it as “reality”, but give 10% to the benefit of doubt. Its reference to BMC as
the platform to run a malicious hypervisor completely correlates with two other
cases. The post author observed for long time continuing improvement of MBLH
software until it became completely invisible to the second hypervisor. We used
proposed test of execution in our attempt to find MBLH in our Lenovo notebook.
There is neither real evidence nor logic to suspect that MBLH has been embedded
during manufacturing process in China. May be later … at any place in the world.
2. Case #2 – US – Michigan University research ended approximately in 2006. Virtual
Machine Based Rootkit (VMBR) is the fundamental research proving that malicious
hypervisor can be developed and work on lower that OS level, and can move
successfully OS one level up and replace it by itself occupying the lowest system level.
We think that this concept and may be the code itself have been used in the Case
#1. We believe that the code has been almost publicly available and finally has been
developed in Malicious BIOS Loaded Hypervisor (MBLH).
The research authors were trying to downplay the danger of the solution and
proposed two possible ways to identify and protect against it. However, the method
“from below” simply does not exist, and as case #1 showed, the hiding capability of
VMBR is extraordinary.

Our research Conclusion (2)

3. Based on Case #1 and Case #2 we do not expect worldwide distribution of MBLH
infected computing resources because of high complexity of BMC BIOS alteration
process. Targeted “customers” may receive a shipment with altered BMC BIOS, and
thus entire local network could be eventually hijacked utilizing 0-day attacks and
updating original BIOS to altered version.
4. Case #3 - The research on IPMI vulnerability, which has been done at Michigan
University and published in 2013, has changed the VMBR/MBLH threat landscape
significantly. The research showed that production servers have numerous
vulnerabilities, which make BMC and then entire system easy to compromise target.
Negligence and ignorance of IT personnel managing server platform created
situation when hundreds of thousands servers around the globe are Internet
connected and thus can be easy exploited. We now see that the most likely scenario
for VMBR/MBLH distribution is over vulnerable BMC implementations either Internet
or LAN connected.
5. Cloud - The most dangerous situation, as we see that, is at “cloud” services
datacenters, which have hundreds of servers working with users over Internet; it is
possible that these servers’ management system also connected to public network.
6. Even without Case #1, it would be enough two MU research projects to get us to
the same conclusion about worldwide threat of VMBR embedded in BMC and
exploiting IPMI.

Pure Summary
• Russian Ghost/VMBR/MBLH is dangerous as

can infiltrate in millions of servers worldwide
• The hunting season is opened but be patient –

we have only two perspective tools so far
• In theory, we cannot identify it, but we still

have a chance …
• There is no protection against it – put your

server is a dumpster – special thanks to IPMI
• NO security standard calls for server

management (IPMI) protection

References

1. Chinese Add-ons: True Stories of virtualization, information security and computer
spying; post on http://xakep.ru/articles/58104/ 12/26/2011. Translated from
Russian, Copyright © DeepSec, GmbH and Rubos, Inc., 2014.

2. Intelligent Platform Management Interface. Wikipedia, see
http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface

3. SubVirt: Implementing malware with virtual machines. Samuel T. King, Peter M.
Chen (University of Michigan); Yi-Min Wang, Chad Verbowski, Helen J. Wang, Jacob
D. Lorch (Microsoft Research); IEEE Symposium on Security and Privacy,
Berkley/Oakland, CA, USA, 21-24 May, 2006.

4. Illuminating the Security Issues Surrounding Lights-Out Server Management by
Anthony J. Bonkoski, Russ Bielawski, J. Alex Halderman; Michigan University. 7Th
USENIX Workshop on Offensive Technologies, August 13, 2013, Washington, DC.
https://www.usenix.org/conference/woot13/workshop-program/presentation/bon
koski

5. Unified Extensible Firmware Interface, Wikipedia;
http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface

http://xakep.ru/articles/58104/
http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://www.usenix.org/conference/woot13/workshop-program/presentation/bonkoski
https://www.usenix.org/conference/woot13/workshop-program/presentation/bonkoski
http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
http://xakep.ru/articles/58104/
http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://www.usenix.org/conference/woot13/workshop-program/presentation/bonkoski
https://www.usenix.org/conference/woot13/workshop-program/presentation/bonkoski
http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface

Thank you!

All questions will be answered:
• mikhailutin@hotmail.com
or
• mutin@rubos.com

• This presentation will be available on DeepSec
site

mailto:mikhailutin@hotmail.com
mailto:mutin@rubos.com
mailto:mikhailutin@hotmail.com
mailto:mutin@rubos.com

A Myth or Reality – BIOS-based Hypervisor
Threat

Special research prepared by Rubos, Inc. team
(We do independent research on security matters in various
domains)

Prepared for DeepSec 2014
Speaker: Mikhail Utin, PhD, CISSP
mikhailutin@hotmail.com

(Questions will be answered after the presentation. Please,
submit them to the speaker in writing)

Copyright © DeepSec GmbH & Rubos, Inc., 2014

Myths and Reality
Myths and reality intersect and interchange.
Greek myth of Achilles – in modern terms is a “search of an

ultimate protection and creation of single point of failure”

Fig.1. Thetis Dipping the Infant Achilles into the River Styx (ca. 1625)

Modern Myths

- Ghosts, witches, witchcraft; Ghost hunting have been
entertaining but unsuccessful – none apprehended and caged
for public exposition ; for believers- reality, for others – a myth

- UFO and UFOlogy – a sort of ghost hunting; believers have a fun
and consider a reality, but yet a myth – no alien is available for
public demo

- IT Management – some see as reality, but in cases like Case #3
below – just a myth

- Information Security – do we have an official myth or a ghost?
- A myth about Malicious Hypervisor (Russian Ghost) appeared on Russian

hackers’ site at the end of 2011. It has all myth’s attributes. There were
rumors about the post, and the storyteller described it as reality.
However, neither he nor somebody else got and caged the ghost for
public exhibition

Russian Ghost Myth – Case #1 and Following Research

We believe that it was real or may still exist, and we possibly know where it
was born and eventually escaped from.

Our research is about three cases. We are interested to identify not only the
“percent of reality”, but also how dangerous it is, how to hunt on, and how to
protect from:

Case #1 - Russian research on Malicious BIOS Loaded Hypervisor
(approximately 2007 – 2010 years) posted at the end of 2011

Case #2 - US Michigan University Virtual-Machine Based Rootkit research
which was done approximately in 2005 – 2006 years (published 2006)

Case #3 - US Michigan University IPMI/BMC (Intelligent Platform
Management Interface/Baseboard Management Controller) vulnerability
research of approximately 2012 – 2013 (published 2013) .

Research Direction

Fig. 2. The process of our research

Case #1 - Russian Ghost – a Real Post and a Myth about
Malicious BIOS Loaded Hypervisor (MBLH) (1)

- Was accidently found in the middle of 2012
- Contains various topics (not technical only) and details
- Has been published on 12/26/2011
- Written in Russian and published on Russian hackers’ site
 If it were a scam with the intention of misleading, it would be
published in English. The fact that he post is almost unknown
relates to its language.

We translated the text and its summary is published on DeepSec
site. Please, see it. Complete text will be available as well.

Reference: Chinese Add-ons: True Stories of virtualization,
information security and computer spying; post on
http://xakep.ru/articles/58104/ ; 12/26/2011

Translated from Russian, Copyright © DeepSec, GmbH and
Rubos, Inc., 2014.

Case #1 – Malicious BIOS Loaded Hypervisor (2)

The project:
Typical Russian computer science project – to develop high performance
computer system; no association with information security. The customer –
Kraftway, one of biggest Russian IT companies working closely with Russian
government. It supplied Intel motherboards for the project.
Quote: “I decided to use new Intel processors with the support of hardware
virtualization even before the official announcement (in early 2007), and to
create a unified computing system … It required writing compact hypervisor
with non-standard functionality. …It is essential to boot the OS on already
virtualized platform, so even the first commands of the OS boot loader
would be executed in a virtual environment. Then the hypervisor has to
virtualize the CPU real mode and all other operating modes. … it was
overstatement to call that as "hypervisor", I began to use the term "hyper-
driver”.
“ …thanks to the cooperation with the company Kraftway I had access to
pre-production models of processors and motherboards…”
Comment: pre-production boards were from Kraftway company and labeled
“Assembled in Canada”.. They have been used for the design phase.

Case #1 – Malicious BIOS Loaded Hypervisor (3)

The problem:
“I had to assemble a system based on first production motherboards, which
had just appeared. However, the system did not work. … I began to
investigate and finally realized that my system hangs while executing
hardware virtualization commands … and finally get the BIOS code from the
official Intel website and reloaded it in the motherboard, and then system
started working.”
The reason:
“China-made motherboard started to work only when I uploaded the BIOS
taken from Intel site. … It became clear that the boards from China contain
additional software modules, embedded in the BIOS, and the standard
analysis software does not see them. Apparently, they also worked with
hardware virtualization and thus were able to hide the true contents of the
BIOS. … Chinese boards had two software systems working simultaneously
on the same hardware virtualization level, which does not allow sharing of
resources.” By “two software” he means his “hyper-driver” and embedded
malicious hypervisor.

Case #1 – Malicious BIOS Loaded Hypervisor (4)

Comment:
 Here is very significant finding – there is malicious hypervisor embedded in
BIOS, and which utilizes hardware virtualization Intel CPU capability. It was
possible to identify that because there was a conflict in sharing resources.
The developers of Malicious BIOS-Level Hypervisor (MBLH) did not expect
that the system will run the second virtualization software on the same level.
We found official Intel documents that the company indeed has assembly
and testing facility (CD1) in Chengdu, China opened in 2005, and another
factory opened in Chengdu in 2007 (CD6). However, in Canada we found
only Flash Memory group in Vancouver/BC, which is unlikely being involved
in assembly process. Thus, there are some doubts concerning the label on
the sample boards “Assembled in Canada”.
The home of the MBLH:
 “… it was necessary to begin to figure out in which of the flash chips was a
software module that works with hardware virtualization. … I was not even
surprised when found out that the "add-on" hypervisor starts working just
after reloading software in flash memory of BMC.”

Case #1 – Malicious BIOS Loaded Hypervisor (5)

Where MBLH lives:

IPMI - Intelligent Platform Management Interface
BMC – Baseboard Management Controller

Case #1 – Malicious BIOS Loaded Hypervisor (6)

Notes about IPMI and BMC implementation:
- IPMI is core platform for server local and remote management,
- BMC is core controller in IPMI implementation and has its own BIOS
- As of the time of Case #1 research, BMC was integrated in so named South
Bridge (I/O Controller Hub 631xESB/632xESB or ESB2)
- There are three flash memory BIOS devices – system, BMC and supporting
I/O controllers
- BMC BIOS software is encrypted and decrypted internally before
execution; that was found by the scientist in Intel documentation. Thus, it
cannot be reverse engineered other that when it is decrypted in BMC RAM
for execution.
-BMC is connected to the system bus and thus having direct access to the
system RAM. IPMI and BMC have complete control of the computer
including power cycling and rebooting.
- By Russian law, encryption of more than 40 bits (256 bit in BMC) is
prohibited in imported equipment.

Case #1 – Malicious BIOS Loaded Hypervisor (7)

When MBLH got in BMC BIOS:
Quote: “ … in new series of server boards … there are "add-on" programs in

flash memory working with BMC and executed on the CPU, and these
programs work with CPU hardware virtualization level.

… Images of flash memory software from Intel's website do not contain such
software modules, thus software modules preventing my hyper-driver
from working properly were illegally embedded in the motherboard
flash memory during the production stage.”

Comment: This is, in general, the author’s conclusion concerning technical
side of the first phase of his research. His conclusion about “ … were
illegally embedded … during the production stage” is based on the
believe in “Assembled in China” label. However, such label does not
mean that BIOS alteration could not be done AFTER such boards left
China manufacturing facility, and outside of China.

Here we are – the first discussion of the concern in Russia:

Quote: “… I informed the management of Kraftway about the problem with
the BMC flash memory firmware and questionable, in legal terms, situation
with the new Intel chipsets and received rather expected response in the
style of "no buzzing, that may hurt business.“

Improvement of MBHL:

“ … however, continuing regularly run their system on new series of
motherboard shipments from China, and new samples. All samples
continued to work steadily. When I switched to the Chinese boards, I saw
more and more miracles. It seemed that colleagues from abroad are actively
improving the operations of their root hypervisor. Last shipments of
suspicious boards behaved almost normally.”

Bingo:

“… it happened what I was waiting for a long time - motherboards from new
shipment did not hang my hyper-driver at all. I was in doubt if I was paranoid
in my suspicions, but new case has strengthened my opinion.”

Case #1 – Malicious BIOS Loaded Hypervisor (8)

Case #1 – Malicious BIOS Loaded Hypervisor (9)

New virtualization feature – new outcome of MBHL case:
“… I started to work when it was revision 7 … in revision 11 conditions of

entry in virtual host for hardware virtualization have been improved
significantly … I added new features of the hardware virtualization in my
hyper-driver, and installed new chip set in standard boards from China, in
which everything had worked without any problems ... New features of the
equipment did not work.

I, resuming the experiments, moved new revision 11 chip set to Canadian
sample motherboards. And new features started working!

… there is only one conclusion possible that colleagues from abroad did not
know about the new revision of hardware virtualization.”

Final status:
“Already knowing how to deal with this problem, I downloaded in the

standard motherboard firmware for the BMC from Intel site. I was sure that
everything will work, but to my great surprise, it did not. Hanging was still
there. This was something new.”

Basically, it was “freeze of the code” – the end of the development, ready
for production!

Case #1 – Malicious BIOS Loaded Hypervisor (10)

Possible MBLH developer?
All boards – both testing and production came from the same source –
Kraftway company. How boards “Assembled in China” came in Kfaftway is
not known, and may be not from China at all. The company is, by the way,
one of leading IT companies in Russia, and thus is capable of high level
software development as well.
New method of catching MBLH:
Fixing by downloading new BIOS revision did not work anymore, and the
scientist decided to measure execution time of system commands in boards
from “China” and “Canada”. Below is the result “without MBLH”:

Case #1 – Malicious BIOS Loaded Hypervisor (11)
The second part of the experiment – with MBLH:

The Result of Analysis column says “Hypervisor is detected”. The execution
time has indeed significantly increased, but it is approximately 60 times
more for all tested commands! It is a bit hard to believe that MBLH software
utilizing hardware virtualization increased execution time of some commands
60 times!

Case #1 – Malicious BIOS Loaded Hypervisor (11)

Expressing concerns and presenting the case to various parties;
1. Intel representative in Russia – no response
2. FSB (Federal Security Services, former KGB) “Center for Information

Protection” (CIP) mid-level executives and specialists – misunderstanding
and almost no interest expressed.

3. FSB CIP second meeting – senior level executives and specialists - The
meeting turned into a lecture. … and finally answered many questions. At
the end of the meeting they thanked us, and said that the issue should be
investigated in the framework of special research.” Finally – the case is
dismissed.

4. To prove the case “…… I should write such a "add-on" myself. I would not
be able to put the "add-on" in the flash memory of the BMC, but can load
the code in the main BIOS. … My Last Judgment Day weapon will utilize the
"add-on" to kill the computer system by an external command … actually
perform single function task of wiping out BIOS flash chip when receiving a
command to destroy the system.” Finally he managed to show the demo to
GasProm (state oil and gas enterprise0) security team, but with the same
success as to others. Dismissed.

Case #1 – Malicious BIOS Loaded Hypervisor (12)
Conclusion

1. The post describes unique experience of identifying a malicious hypervisor, which
is loaded before OS bootup and right after system BIOS hardware initialization.
2. The post definitely raises some questions, because important technical information
concerning experiments is missed. However, considering the post contents, we give it
90% of chance being reality while leaving 10% to the benefit of doubt.
3. The author identified, while missing details, that the malicious hypervisor is
embedded in BMC BIOS. Last years’ research on modern exploits of IPMI and its
weaknesses completely correlates with that.
4. The author describes his experiments and the development and improvement of
MBLH up to the level when it cannot be identified even by running yet another
virtualization software on the same level.
5. Experiments with commands’ execution time to identify the existence of MBLH
are important but lacking details, which would lower our suspicion level.
6. The author’s ordeal while trying to convince authorities and technical professionals
is very typical and well known to security professionals.
7. While the author believes that there is “Chinese Hand” in altering BMC BIOS, we
have some doubts, because the label “Assembled in China” does not mean anything,
like the label “Assembled in Canada” where we did not find Intel facility related to
manufacturing and assembly process. By details of this case, MBLH might be
developed by Kraftway or FSB.

Case #2 – the US – Is where the Idea of Malicious Hypervisor
Came from?

Not too much known research with prominent sponsors:
Joined team from University of Michigan and Microsoft Research did
sponsored research “SubVirt: Implementing Malware with Virtual Machines”
which (quote) “was supported in part by National Science Foundation grants
CCR-0098229 and CCR-0219085, by ARDA grant NBCHC030104, by Intel
Corporation, and by Microsoft”.
What is ARDA? Would then ARDA be now DARPA? Yes, many thanks to
Wikipedia, ARDA = DARPA (Defense Advanced Research Projects Agency).
Therefore, a while before Russian scientist started fighting with a ghost
embedded in BMC BIOS, the foundation for malicious hypervisor has been
researched, and two proof-of-concepts implemented sometime in 2005 –
2006 years.
This research is very important to understand various aspects of now existing
problem of likely existing invisible malware and perspectives to mitigate that.

Case #2 - The Purpose of VMBR Research

Quote: “We evaluate a new type of malicious software that gains
qualitatively more control over a system. This new type of malware, which
we call a virtual-machine based rootkit (VMBR), installs a virtual-machine
monitor underneath an existing operating system and hoists the original
operating system into a virtual machine. Virtual-machine based rootkits are
hard to detect and remove because their state cannot be accessed by
software running in the target system.”
VMBR is different from MBLH, because it is not embedded in BMC BIOS but
loaded in RAM, and thus has different functionality. Just the first step …
Quote: “Our project which we called SubVirt, shows how attackers can use
virtual-machine technology to address the limitations of current malware
and rootkits.
…We show how attackers can install a virtual-machine monitor (VMM)
(comment: hypervisor) underneath an existing operating system and use that
VMM to host arbitrary malicious software. The resulting malware, which we
call a virtual machine based rootkit (VMBR), exercises qualitatively more
control than current malware, supports general purpose functionality, yet
can completely hide all its state and activity.”

Case #2 - Details of Ultimate Weapon Research

The research goals:
“We demonstrate that a VMBR can be implemented on commodity hardware
and can be used to implement a wide range of malicious services.”
“We show that, once installed, a VMBR is difficult to detect or remove.”
“We implement proof-of- concept VMBRs on two platforms (Linux/VMware and
Windows/VirtualPC) and write malicious services such as a keystroke sniffer, a
phishing web server, a tool that searches a user’s file system for sensitive data,
and a detection countermeasure which defeats a common VMM detection
technique.”
“Finally, we discuss how to detect and defend against the threat posed by
VMBRs and we implement a defense strategy suitable for protecting systems
against this threat.”

Case #2 – How to Control Guest OS

In “normal” virtual machine implementation there is no need for host OS to
completely control guest OS. However, VMBR requires that:
“ … One problem faced by VM services is the difficulty in understanding the
states and events inside the guest they are serving; VM services operate at a
different level of abstraction from guest software. Software running outside
of a virtual machine views low level virtual-machine state such as disk blocks,
network packets, and memory. Software inside the virtual machine interprets
this state as high-level abstractions such as files, TCP connections, and
variables. This gap between the VMM’s view of data/events and guest
software’s view of data/events is called the semantic gap.”
“Virtual-machine introspection (VMI) describes a family of techniques that
enables a VM service to understand and modify states and events within
the guest. VMI translates variables and guest memory addresses by reading
the guest OS and applications’ symbol tables and page tables. VMI uses
hardware or software breakpoints to enable a VM service to gain control at
specific instruction addresses. “

Case #2 – Design and Implementation Notes (1)

VMBR installation process (quote):
“In the overall structure of a VMBR, a VMBR runs beneath the existing
(target) operating system and its applications. To accomplish this, a VMBR
must insert itself beneath the target operating system and run the target OS
as a guest. To insert itself beneath an existing system, a VMBR must
manipulate the system boot sequence to ensure that the VMBR loads
before the target operating system and applications. After the VMBR loads,
it boots the target OS using the VMM. As a result, the target OS runs
normally, but the VMBR sits silently beneath it.” This process is different from
MBLH where the hypervisor is loaded from BMC and then boots the OS.
Malicious services (quote):
“Using our proof-of-concept VMBRs, we developed four malicious services
that represent a range of services a writer of malicious software may want to
deploy. We implemented a phishing web server, a keystroke logger, a service
that scans the target file system looking for sensitive files, and a defense
countermeasure that defeats a current virtual-machine detector. To develop
these services, we use the host OS as our attack OS (below):

Case #2 – Design and Implementation Notes (2)

Case #2 – Design and Implementation Notes (3)

Malicious services:
The authors of this research definitely went much further than we originally
discussed as malicious hypervisor and MBLH. They also introduced exploits
on the top of malicious hypervisor. That is actually going to the very end of a
system compromise.
Maintaining control – defending VMBR:
Quote: “ …The only time the VMBR loses control of the system is in the
period of time after the system powers up until the VMBR starts. if the BIOS
boots a program on an alternative medium, that program can access the
VMBR’s state.”
There are two measures to regain the control:
- Handling reboots by restarting the virtual hardware rather than resetting
the underlying physical hardware thus creating an illusion of reboot.
- Emulation of system shutdown by using ACPI (Advanced Configuration and
Power Interface) sleep states to switch hardware in lower power mode,
which look s like a shutdown while memory state is intact. The most
targeted systems like servers are really rear shutdown.

Case #2 – Design and Implementation Notes (4)

Evaluation of the implementation:
Quote: “This section evaluates the impact of a VMBR on a
system. We valuate the disk space used by a VMBR, the time to
install a VMBR, the effect of a VMBR on the time to boot the
target OS, the impact of a VMBR as viewed by a user, and the
effect of the memory space used by a VMBR.”
Comment:
The section contains interesting technical material, and could be
helpful in further research of MBLH case. However, the VMBR
research has been done on systems not yet supporting
hardware virtualization, so dependences and numbers will be
completely different for modern systems starting from 2007
year like in MBLH case.

Case #2 - Defending against VMBR (1)

This is possibly the most interesting part of this research – how the creators
of ultimate weapon suggest protecting against it. Quote: “In this section, we
explore techniques that can be used to detect the presence of a VMBR.
VMBRs are fundamentally more difficult to detect than traditional malware
because they virtualize the state seen by the target system and because an
ideal VMBR modifies no state inside the target system. “
There are two methods:
Security software below the VMBR:
1. To run a “detector” software below VMBR – by the VMBR concept, only
system BIOS is below, so this recommendation is not concrete.
2. Secure boot prevents loading drivers and other software modules not
having a “signature”, which compared with “platform key” in a firmware.
However, that is the function of boot loader to compare the key and
signatures, but one of the main functions of VMBR is the loader alteration.
Secure boot is actually above VMBR, not below.
3. Other methods are secure hardware, the boot from save media and
secure virtual machine monitor. All of them will try to boot by other than
affected hard drive. However, we’ve seen a malware which blocks any boot
but the hard drive and does not matter what is configured in BIOS.

Case #2 - Defending against VMBR (2)

Secure Boot – continue:
“Using a secure VMM, we implemented an enhanced version of secure boot
which can prevent VMBR installations. The goal of our secure boot system is
to provide attestation for existing boot components, such as the disk’s master
boot record, the file system’s boot sector, and the OS’s boot loader and also
to allow legitimate updates of these components. All attempted updates of
these components are verified (by checking the cryptographic signature)
before they are allowed to complete.”
Our opinion:
We see some inconsistency in this concept. When such “secure VMM is
installed? If before VMBR, that each computer system requires such
component. If after VMBR is installed first,it controls any other installations,
thus can prevent creating VMM on its own level. We, in general, disagree
with that anything could be installed below VMBR, because it is installed
right after BIOS hardware initialization and initial tests, and thus can control
any other installation.

Case #2 - Defending against VMBR (3)

Software above VMBR - many obstacles:
1. General obstacle to run security software above VMBR is, as discussed, its
position above and thus it is completely controlled by VMBR. However, if
VMBR utilizes all computer hardware resources, then (quote) “… timing
differences can be noticed by software running in the virtual machine by
comparing the running time of benchmarks against wall-clock time”.
The overhead in CPU, memory, hard drive could be measured, and then may
be altered by VMBR as well. However, external clock will deliver unaltered
time.
We would like to note here that such measurements require two computer
states – before and after VMBR installation, or two identical systems to
compare, or somehow disabling VMBR. We will discuss our experiments and
conditions of “overhead” testing below.
2. Another option is utilization of HIDS system which would test installed
software , for instance, I/O drivers for changes which required for
virtualization.

Case #2 - Conclusion

Case #2 goals:
- The design and implementation of Virtual Machine Based Rootkit, Implementation
of malware utilizing VMBR features, Evaluation of VMBR, Implementation on two
platforms, Detection and defense against VMBR.
The research and the paper representing it are perfectly done, and convincing that all
practical implementations worked according to the research theory and goals.
Our opinion:
Authors finally tried to downgrade potential threat of VMBR-like systems and leverage
a possibility to overcome it.
We do not share authors’ pessimism over VMBR deadly capabilities and optimism
over detection and defeat. “Russian Ghost” Case #1 perfectly correlates with VMBR
concept, and goes further by exploiting BMC capability to run malicious hypervisor
on the lowest level possible. We believe that such hypervisor could even run
before system BIOS thus virtualizing it and its functions.
By our opinion, there are two main results – the proof-of-concept and the
code of VBMR. The research has been done before IEEE symposium in May,
2006. Considering that the research described in “Russian Ghost’”Case #1
began in 2007 or later, there is complete time correlation. The concept and
the code could be used to move VMBR to the next level – BMC BIOS based
MBLH. The threat level thus has significantly increased.

Our Case – Global or Local Threat and Possible Implementation

The research in the Case #2 lowered our doubts that the Case #1 is a myth.
We see definite correlation and the development of initial idea of VMBR.
However, even if Case #1 were complete myth, sooner or later the idea of
VMBR would find its supporters and implementers in the form of MBLH.

In the following paragraph we would like to identify the place and the
vector of VMBR/MBLH threat. We will do our analysis bases on two already
discussed cases first, and then will review our conclusion considering the
Case #3, which follows.

Global or local threat? That is may be the most important question. It
depends on how easy is to deploy and to distribute the threat.

Our case – VMBR and MBLH Deployment

Case #2 (VMBR) does not consider any particular deployment rather than
RAM, while Case #1 (MBLH) pinpoints BMC BIOS. BMC BIOS has its own
firmware file, which is to be deployed together with others.
The entire BOIS file is signed by Intel QA, and downloaded from authorized
resource. Thus, it is very unlikely that official Intel BIOS file contains an
alteration, and more likely it happened after motherboard manufacturing,
or server assembly process.
We think that alteration process with associated logistics is very manual and
is done for particular targets. We do not see a possibility of mass production
of altered board to deploy around the globe.
So, it is very unlikely that a maniac hijacked Intel facility and spreads altered
software with the purpose of pressing a button “Die All”. However, the access
to data sources is very valuable in some cases.

Our deployment conclusion: it is more feasible to alter some motherboards
or servers targeting highly valuable data resources. Thus we dismiss the
global option and incline to consider local MBLH deployments

Our case – VMBR and MBLH Distribution

Distribution:
Computing resources with MBLH will be physically shipped to targets as the
first part of infiltration process. Then, utilizing MBLH resources and local
network vulnerabilities other servers could be hijacked and converted to
silent and invisible bots. Such process of searching and converting local
targets does not require external resources excepting sites for downloading
altered BIOS versions.
Our Case conclusion:
1. So far, based on what we know by two cases, we do not expect worldwide
distribution of MBLH infected computers because of high complexity of
BMC BIOS alteration process and deployment. Targeted “customers” may
receive a shipment with altered BMC BIOS, and thus entire local network
could be eventually hijacked.
2. Concerning uploading VMBR in a computer system RAM, Case #2
research did not really consider options. That could be local malicious
activity of IT personnel uploading VMBR from a CD-ROM, etc. In any case,
local uploading is really limited as means of VMBR distribution.

Case #3 – Widespread Distribution of Malicious Hypervisor via
IPMI vulnerability

Now is the Case #3 - we return to Case #1 but with different perspective.
Michigan University research “Illuminating the Security Issues Surrounding
Lights-Out Server Management” by Anthony J. Bonkoski, Russ Bielawski and
J. Alex Halderman. Their research gave us new information applicable to
already considered cases.
Quote: “This paper examines the security implications of the Intelligent
Platform Management Interface (IPMI), which is implemented on server
motherboards using an embedded Baseboard Management Controller
(BMC). We consider the threats posed by an incorrectly implemented IPMI
and present evidence that IPMI vulnerabilities may be widespread. “
“We analyze a major OEM’s IPMI implementation and discover that it is
riddled with textbook vulnerabilities, some of which would allow a remote
attacker to gain root access to the BMC and potentially take control of the
host system.
Using data from Internet-wide scans, we find that there are at least 100,000
IPMI-enabled servers (across three large vendors) running on publicly
accessible IP addresses, contrary to recommended best practice”.

Case #3 – Introduction and Related Topics

IPMI: Intelligent Platform Management Interface has been known since 1998,
is independent from OS and functions even when computer system is down.
For yet unknown reason, up until 2012 – 2013 IPMI insecurity was not
widely discussed, with the exception of our Case #1, when Russian scientist
pointed out to BMC embedded malicious hypervisor.
The research lists various known exploits, which could be installed in BMC.
Quote: “Malware residing on the BMC could be extremely difficult to detect,
since it sits at an even lower architectural layer than a BIOS or VM-based
rootkit (reference to VMBR)”.
It is considered as common sense security practice not to connect IPMI
devices (i.e. its network controller) to public network. However (quote)“…
we use data from Internet-wide surveys to reveal public IP addresses of over
100,000 IPMI devices, including more than 40,000 systems that our results
suggest are remotely exploitable.”
Quote:”…Instead of securing IPMI vendors do rather opposite: ”The
vulnerabilities we find, along with others previously found …, suggest that
some IPMI manufacturers are systematically failing to properly secure these
devices.”

Case #3 – IPMI Security Risks

All known BMC OS use Linux OS which as any requires security updates.
“IPMI malware carries similar threats (like BIOS) and is likely easier to
develop, since many BMCs run a standard operating system. BMC malware
would also likely be easier to install remotely, due to IPMI’s substantial
network-facing attack surface.”

Attack surface: IPMI (Supermicro Inc. implementation) has six TCP and UDP
ports for communication and management. Even if recommended separate
management network is used, there still is an opportunity to connect to
BMC exploiting various issues.

Authentication risks: Administrators tend to using default or the same
password on multiple servers. And IPMI device may use insecure password
storage. Thus, after compromising one system it is possible to get access to
multiple.

Case #3 – Attack Scenarios

1. Subverting the host system- by exploiting remote management capabilities
and thus accessing the most of server configuration
2. BMC spyware against host’s OS– Quote: “If the attacker can install
malware on the BMC, it would have a powerful vantage point for spying on
the system and its administrator.”
3. Persistent attack from BMC – Quote: “As the BMC operates independently
from the host’s operating system and CPU, it provides an ideal hiding place
for a stealthy, highly persistent rootkit….A BMC rootkit would survive
reinstallation of the host’s OS, or even complete replacement of the host’s
storage devices. … could even be designed to survive BMC firmware updates
by dynamically patching the new firmware.”
4. Attacking BMC from the host system – an attacker could re-flash the BMC’s
firmware from compromised host’s OS.
5. IPMI botnets – Quote: ”If widely used IPMI devices can be compromised
remotely, they can be leveraged to create large networks of bots. … the
system operator is unable to run normal malware detection and removal
tools within the BMC.“
We see that 4 out of 5 scenarios tightly correlate with the Case #1 claim that
malicious hypervisor had been embedded in BMC firmware.

Case #3 – Analysis, Attacks and Network measurements

Quote: “To explore the potential for BMC compromise, we analyzed an IPMI
implementation shipped by one large server manufacturer, Supermicro. …
We ultimately discovered a range of vulnerabilities, and we developed two
proof-of-concept exploits to demonstrate some of the most critical
problems.”
Vulnerabilities and associated attacks:
Insecure input validation, Shell injection vulnerabilities, Buffer overflow
vulnerabilities and Buffer overflow exploit.
(Quote) “ … These vulnerable firmware images apply to 135 Supermicro
product models. The problems may also affect IPMI devices from other
manufacturers that are based on similar ATEN firmware.”
Network measurements:
Quote: “… we used data from an Internet-wide network survey conducted in
May 2013”. While the search was limited to certificates’ analysis, the
authors were able to identify over 105,000 servers of major manufacturers
(Dell, Supermicro and HP) connected to Internet, and likely having
vulnerabilities.

Case #3 - The research conclusion

Quotes:
“… Since BMCs operate independently of the host system and CPU, cleverly
written malware running there could potentially reside undetected
indefinitely. Unfortunately, due to the closed nature of BMC firmware,
server operators have few avenues to defend themselves without vendor
assistance.”
” … We uncovered a wide range of vulnerabilities and demonstrated two
working attacks that allowed us to gain root shell access. These problems
pose an immediate threat to many systems in the field; we found over
40,000 devices similar to the one we analyzed visible on public IP
addresses.”
“…In the long run, securing remote management systems calls for a
defense-in depth approach. Vendors need to apply careful security
engineering practices, minimize attack surfaces, and help users ensure that
their systems are appropriately locked down and isolated from public
networks.”

Our Case #3 conclusion

1. The research radically changes our preliminary conclusion given in p.4.2.
Now, combining all three cases, we see global threat by VMBR/MBLH
distribution via IPMI vulnerability, which is the combination of very low
security of IPMI/BMC implementations and human factor – simply security
ignorance of IT personnel. Numbers shown in the Case #3 research are not
final, and may turn in to millions of ready for exploits servers.
2. We do not think that the situation will improve in near future, because of
costs of IPMI/BMC securing and required time. Neither we are optimistic
over the “human factor” and IT attitude.
3. We see that modern trend toward “cloud services” may affect overall
information security. Users of in most cases do not understand that “clouds”
are simply monstrous datacenters with thousands of computers, and all of
them serve users over Internet. Having thousands of opened Internet
connections, even with all security measures, represent high risk of one
exploited and then all infected over shared vulnerable management
network. Needless to say that such centers are very likely to have
management systems Internet connected as well.

Our Ten Cents to How to Identify MBLH Presence

We share the Case #3 opinion that identification from “below” simply does
not exist as VMBR/MBLH is always on the lowest level, for instance
embedded in BMC/IPMI.
Catching by 100% utilization and in “statistical net”:
1. Instead of measuring commands’ execution time (Case #1), use 100%
utilization (Case #2) and watch on software execution time.
2. We need to get two testing options – with or without MBLH. It is possible
only if computer system BIOS supports turning hardware virtualization on
or off. Not all chip and server vendors support that. Our Dell T105 AMD
Opteron based servers have virtualization always up – no BIOS settings for.
3. However, hardware virtualization will work if MBLH is not designed to
reside below system BIOS. In this case it will be able to alter BIOS function of
turning virtualization off.
4. We used supporting virtualization and BIOS settings Lenovo notebook
with Linux CentOS 6.6 OS installed on.
5. This computer system BIOS has two virtualization related options - Intel
Virtualization Technology (Disable/Enable) and Intel VT-d Feature
(virtualization technology support for direct I/O, Disable/Enable).

Our Ten Cents – Measurements and Statistical Net

No Virt. Virt.
Test # Time Dev (Dev)2 Test # Time Dev (Dev)2

31 19:54 1 1 41 19:57 5 25
32 19:49 -4 16 42 19:45 -7 49
33 19:55 2 4 43 19:50 -2 4
34 19:59 6 36 44 19:48 -4 16
35 19:46 -7 49 45 19:54 2 4
36 19:43 -10 100 46 19:40 -12 144
37 19:58 5 25 47 20:03 11 121
38 19:55 2 4 48 19:57 5 25
39 19:50 -3 9 49 19:59 7 49
40 20:00 7 49 50 19:49 -3 9

Mean: 19:53 Sum: 293 Mean: 19:52 Sum: 446

SD 5.4 SD 6.7

Our testing software “dowork” (it is available for public) does floating point
calculation driving CPU to 100% utilization. Each calculation cycle takes a few
seconds. We used 400 cycles to get statistically more stable results.
However, various OS processes created certain deviation, thus we used 10
tests to improve statistics in both cases when two virtualization options are
disabled and when enabled.
Our results presented in the following table where first four columns are for
the test with disabled virtualization and next four – with virtualization; Dev is
deviation, SD – standard deviation, time is “minutes:seconds” format.
We see that for both tests mean values are very close – 19:53 and 19:52.
Standard deviation in the case of enabled virtualization is higher, but
statistically both results are very close – SD is 5.4 and 6.7.

We did not find - statistically – the presence of a malicious hypervisor.

We think that such statistical testing approach on long running programs is
the only one way to overcome live OS variations in execution time and is
likely to identify the presence of a malicious hypervisor.

Our Ten Cents – Measurements and Statistical Net (2)

Our Ten cents – External MBLH Catching - SIEM

 There is one more potential opportunity to catch VMBR/MBLH. Modern
Security Information and Event Management System (a SIEM is not a luxury
anymore, but security necessity) may help to identify short and infrequent
connections of a malicious hypervisor via management or system network
interface to internal or external hosts. Basically, we are facing to find a
needle in a hay stock, but this a SIEM is for – logging random and seldom
events across entire network and systems and finding suspicious
connections. We did not implement such hunt simply because we do not
have servers with hardware virtualization support disabling functionality in
system BIOS, but we encourage the audience not to ignore such opportunity
if you have a few servers to experiment with and a SIEM in place.

Our research Conclusion

1. Case #1 – Russian mythical post. It is the only one but yet circumstantial evidence of
successful attempt to embed a malicious hypervisor in BMC BIOS software. We
consider it as “reality”, but give 10% to the benefit of doubt. Its reference to BMC as
the platform to run a malicious hypervisor completely correlates with two other
cases. The post author observed for long time continuing improvement of MBLH
software until it became completely invisible to the second hypervisor. We used
proposed test of execution in our attempt to find MBLH in our Lenovo notebook.
There is neither real evidence nor logic to suspect that MBLH has been embedded
during manufacturing process in China. May be later … at any place in the world.
2. Case #2 – US – Michigan University research ended approximately in 2006. Virtual
Machine Based Rootkit (VMBR) is the fundamental research proving that malicious
hypervisor can be developed and work on lower that OS level, and can move
successfully OS one level up and replace it by itself occupying the lowest system level.
We think that this concept and may be the code itself have been used in the Case
#1. We believe that the code has been almost publicly available and finally has been
developed in Malicious BIOS Loaded Hypervisor (MBLH).
The research authors were trying to downplay the danger of the solution and
proposed two possible ways to identify and protect against it. However, the method
“from below” simply does not exist, and as case #1 showed, the hiding capability of
VMBR is extraordinary.

Our research Conclusion (2)

3. Based on Case #1 and Case #2 we do not expect worldwide distribution of MBLH
infected computing resources because of high complexity of BMC BIOS alteration
process. Targeted “customers” may receive a shipment with altered BMC BIOS, and
thus entire local network could be eventually hijacked utilizing 0-day attacks and
updating original BIOS to altered version.
4. Case #3 - The research on IPMI vulnerability, which has been done at Michigan
University and published in 2013, has changed the VMBR/MBLH threat landscape
significantly. The research showed that production servers have numerous
vulnerabilities, which make BMC and then entire system easy to compromise target.
Negligence and ignorance of IT personnel managing server platform created
situation when hundreds of thousands servers around the globe are Internet
connected and thus can be easy exploited. We now see that the most likely scenario
for VMBR/MBLH distribution is over vulnerable BMC implementations either Internet
or LAN connected.
5. Cloud - The most dangerous situation, as we see that, is at “cloud” services
datacenters, which have hundreds of servers working with users over Internet; it is
possible that these servers’ management system also connected to public network.
6. Even without Case #1, it would be enough two MU research projects to get us to
the same conclusion about worldwide threat of VMBR embedded in BMC and
exploiting IPMI.

Pure Summary
• Russian Ghost/VMBR/MBLH is dangerous as

can infiltrate in millions of servers worldwide
• The hunting season is opened but be patient –

we have only two perspective tools so far
• In theory, we cannot identify it, but we still

have a chance …
• There is no protection against it – put your

server is a dumpster – special thanks to IPMI
• NO security standard calls for server

management (IPMI) protection

References

1. Chinese Add-ons: True Stories of virtualization, information security and computer
spying; post on http://xakep.ru/articles/58104/ 12/26/2011. Translated from
Russian, Copyright © DeepSec, GmbH and Rubos, Inc., 2014.

2. Intelligent Platform Management Interface. Wikipedia, see
http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface

3. SubVirt: Implementing malware with virtual machines. Samuel T. King, Peter M.
Chen (University of Michigan); Yi-Min Wang, Chad Verbowski, Helen J. Wang, Jacob
D. Lorch (Microsoft Research); IEEE Symposium on Security and Privacy,
Berkley/Oakland, CA, USA, 21-24 May, 2006.

4. Illuminating the Security Issues Surrounding Lights-Out Server Management by
Anthony J. Bonkoski, Russ Bielawski, J. Alex Halderman; Michigan University. 7Th
USENIX Workshop on Offensive Technologies, August 13, 2013, Washington, DC.
https://www.usenix.org/conference/woot13/workshop-program/presentation/bon
koski

5. Unified Extensible Firmware Interface, Wikipedia;
http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface

Thank you!

All questions will be answered:
• mikhailutin@hotmail.com
or
• mutin@rubos.com

• This presentation will be available on DeepSec
site

	Slide 1
	Myths and Reality
	Modern Myths
	Russian Ghost Myth – Case #1 and Following Research
	Research Direction
	Slide 6
	Case #1 – Malicious BIOS Loaded Hypervisor (2)
	Case #1 – Malicious BIOS Loaded Hypervisor (3)
	Case #1 – Malicious BIOS Loaded Hypervisor (4)
	Case #1 – Malicious BIOS Loaded Hypervisor (5)
	Case #1 – Malicious BIOS Loaded Hypervisor (6)
	Case #1 – Malicious BIOS Loaded Hypervisor (7)
	Case #1 – Malicious BIOS Loaded Hypervisor (8)
	Case #1 – Malicious BIOS Loaded Hypervisor (9)
	Case #1 – Malicious BIOS Loaded Hypervisor (10)
	Case #1 – Malicious BIOS Loaded Hypervisor (11)
	Case #1 – Malicious BIOS Loaded Hypervisor (11)
	Case #1 – Malicious BIOS Loaded Hypervisor (12) Conclusion
	Slide 19
	Case #2 - The Purpose of VMBR Research
	Case #2 - Details of Ultimate Weapon Research
	Case #2 – How to Control Guest OS
	Case #2 – Design and Implementation Notes (1)
	Case #2 – Design and Implementation Notes (2)
	Case #2 – Design and Implementation Notes (3)
	Case #2 – Design and Implementation Notes (4)
	Case #2 - Defending against VMBR (1)
	Case #2 - Defending against VMBR (2)
	Case #2 - Defending against VMBR (3)
	Case #2 - Conclusion
	Our Case – Global or Local Threat and Possible Implementation
	Our case – VMBR and MBLH Deployment
	Our case – VMBR and MBLH Distribution
	Slide 34
	Case #3 – Introduction and Related Topics
	Case #3 – IPMI Security Risks
	Case #3 – Attack Scenarios
	Case #3 – Analysis, Attacks and Network measurements
	Case #3 - The research conclusion
	Our Case #3 conclusion
	Our Ten Cents to How to Identify MBLH Presence
	Our Ten Cents – Measurements and Statistical Net
	Our Ten Cents – Measurements and Statistical Net (2)
	Our Ten cents – External MBLH Catching - SIEM
	Our research Conclusion
	Our research Conclusion (2)
	Pure Summary
	References
	Thank you!
	Slide 1
	Myths and Reality
	Modern Myths
	Russian Ghost Myth – Case #1 and Following Research
	Research Direction
	Slide 6
	Case #1 – Malicious BIOS Loaded Hypervisor (2)
	Case #1 – Malicious BIOS Loaded Hypervisor (3)
	Case #1 – Malicious BIOS Loaded Hypervisor (4)
	Case #1 – Malicious BIOS Loaded Hypervisor (5)
	Case #1 – Malicious BIOS Loaded Hypervisor (6)
	Case #1 – Malicious BIOS Loaded Hypervisor (7)
	Case #1 – Malicious BIOS Loaded Hypervisor (8)
	Case #1 – Malicious BIOS Loaded Hypervisor (9)
	Case #1 – Malicious BIOS Loaded Hypervisor (10)
	Case #1 – Malicious BIOS Loaded Hypervisor (11)
	Case #1 – Malicious BIOS Loaded Hypervisor (11)
	Case #1 – Malicious BIOS Loaded Hypervisor (12) Conclusion
	Slide 19
	Case #2 - The Purpose of VMBR Research
	Case #2 - Details of Ultimate Weapon Research
	Case #2 – How to Control Guest OS
	Case #2 – Design and Implementation Notes (1)
	Case #2 – Design and Implementation Notes (2)
	Case #2 – Design and Implementation Notes (3)
	Case #2 – Design and Implementation Notes (4)
	Case #2 - Defending against VMBR (1)
	Case #2 - Defending against VMBR (2)
	Case #2 - Defending against VMBR (3)
	Case #2 - Conclusion
	Our Case – Global or Local Threat and Possible Implementation
	Our case – VMBR and MBLH Deployment
	Our case – VMBR and MBLH Distribution
	Slide 34
	Case #3 – Introduction and Related Topics
	Case #3 – IPMI Security Risks
	Case #3 – Attack Scenarios
	Case #3 – Analysis, Attacks and Network measurements
	Case #3 - The research conclusion
	Our Case #3 conclusion
	Our Ten Cents to How to Identify MBLH Presence
	Our Ten Cents – Measurements and Statistical Net
	Our Ten Cents – Measurements and Statistical Net (2)
	Our Ten cents – External MBLH Catching - SIEM
	Our research Conclusion
	Our research Conclusion (2)
	Pure Summary
	References
	Thank you!

