rt-solutions.de -. 200

)
experts you can trust. ° .'.'

Java's SSLSocket:
How Bad APIs Compromise Security
Tale of a Frustrated Android Developer

Dr. Georg Lukas <lukas@rt-solutions.de>

mailto:lukas@rt-solutions.de

About the Speaker rt-solutions.de '.°"

IT Consultant at rt-solutions.de
(ITSec, Smartphone Payment)

> General

¥ Mars University

Open Source developer

(embedded Linux, Android) Dean Vernon
¥ Planet Express
. .) - Fry
Malntalner Of anIm _ I'm with stupid on the moon!

Bender

(yet another XMPP instant messenger)

Professor Hubert Farnswor...

Operator of yax.im (Public XMPP service) RIS

Mobile / Wireless / Security geek

http://yaxim.org/yax.im/

Motivation - Why Am I Here Today

rt-solutions.de RIS

Development of yaxim — Open-Source XMPP app

XMPP uses TLS for securing sessions
(logins, chat content)

yaxim uses Smack for XMPP +
MemorizingTrustManager for TLS

Added hostname checking to MTM

no place in Smack to add?!?

va_.https:ffop—co.defc A WA

&=

C A |8 https://op-co.de/CVE-2014-5075.htmil S5 £ D.

CVE-2014-5075 MitM Vulinerability
in the Smack XMPP Library for Java

Georg Lukas, rt-solutions.de, 2014-08-05

Smack is an Open Source XMPP (Jabber) client library for instant messaging and
presence written in lava, Smack prior to version 4.0.2 is vulnerable to TLS Man-in-

Accept Unknown Certificate?

The server certificate is not signed
by a known Certificate Authority.

Do you want to connect anyway?

Certificate details:

CN=op-co.de

2014-05-12 - 2016-05-11

SHA-256:
b3:3a:d3:d0:8f:52:d1:35:f5:11:€9:0b:7
5:2c:dd:ch:8e:80:c4:69:67:7e:b5:7b:0
d:22:b5:7d:cf:fb:e8:fd

SHA-1:

d3:de:70:ab:6d:3b:dc:6f:67:71:85:ef:0
3:b3:1b:74:6a:2b:7c:1c

Signed by: CN=CAcert Class 3 Root,
OU=http://www.CAcert.org,
O=CAcert Inc.

Al A cccwd Mlaca P Face Al otk /7

Always Once Abort

rt-solutions.de ‘.°--

A brief history of SSL/TLS
Java TLS APIs: All-or-nothing security
Making your (Android) application more secure

TLS in the Post-Snowden Era

A Brief History of SSL/TLS rt-solutions.de

Early 1990ies: Wild West Internet

Everybody uses telnet, ftp, nfs, ...
1995: Netscape releases SSL 2.0 (Secure Sockets Layer)
1996: SSL 3.0 (redesign due to security flaws)
1999: TLS (Transport Layer Security) RFC based on SSLv3
1999, 2000: HTTP, IMAP, ... over TLS, w/ hostname checks
2001: Sun creates JSSE library with JDK 1.4

2006: TLS 1.1 fixes padding and CBC attack (BEAST, 2011)
2008: TLS 1.2 fixes timing oracle (Lucky13, 2013)
2011: Deprecation of SSL... version 2

A Brief History of SSL/TLS (2) rt-solutions.de *e

2011: Hostname checking unified in RFC6125, named...

“"Representation and Verification
of
Domain-Based Application Service Identity

Within

Internet Public Key Infrastructure
Using

X.509 (PKIX) Certificates
in the Context of
Transport Layer Security (TLS)”

A Brief History of SSL/TLS (3) rt-solutions.de *e

2012, 2013: CRIME and BREACH attacks on compression
2014: POODLE attack deprecates SSLv3

TLS

Challenges for Developers rt-solutions.de e

How hard can secure communication with TLS be?
Certificate Verification
Is the presented certificate valid (in terms of time)?
Is it signed by a “trusted” Certificate Authority?
Hostname Verification
Does the certificate match the server we want to talk to?
Development/Production
TLS stands in the way during application development
Got a cert for ,www-dev.intranet"?
Users want Self-Signed / Expired / Wrong-hostname Certs
Typically in , private cloud" installations

How to use TLS in Java? rt-solutions.de “3%5e

Theory:
public abstract class SSLSocket extends Socket

This class extends Sockets and provides secure socket using protocols such

as the "Secure Sockets Layer" (SSL) or IETF "Transport Layer Security" (TLS)
protocols.

Such sockets are normal stream sockets, but they add a layer of security
protections over the underlying network transport protocol, such as TCP.
Those protections include:

» Integrity Protection. SSL protects against modification of messages by an
active wiretapper.

» Authentication. In most modes, SSL provides peer authentication.
Servers are usually authenticated, and clients may be authenticated as
requested by servers.

» Confidentiality (Privacy Protection). In most modes, SSL encrypts data
being sent between client and server. This protects the confidentiality of
data, so that passive wiretappers won't see sensitive data such as
financial information or personal information of many kinds.

https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html

How to use TLS in Java? rt-solutions.de “3%5e

Theory:
public class HttpsURLConnection extends HttpURLConnection

HttpsURLConnection extends HttpURLConnection with support for https-
specific features.

See http://www.w3.org/pub/WWW/Protocols/ and RFC 2818 for more details
on the https specification.

This class uses HostnameVerifier and SSLSocketFactory. There are default
implementations defined for both classes. However, the implementations can
be replaced on a per-class (static) or per-instance basis. All new
HttpsURLConnections instances will be assigned the "default" static values at
instance creation, but they can be overriden by calling the appropriate per-
instance set method(s) before connecting.

https://docs.oracle.com/javase/7/docs/api/java/net/HttpURLConnection.html
http://www.w3.org/pub/WWW/Protocols/
http://www.ietf.org/

How to use TLS in Java? rt-solutions.de 3

Practice:

java.security.cert.CertPathvalidatoreException: Trust anchor for certification path not found.
at org.apache.harmony.xnet.provider.jsse.TrustManagerImpl.checkTrusted(TrustManagerImpl.java:282)
at org.apache.harmony.xnet.provider.jss imp1.checkServerTrusted(TrustManagerImpl.jav
at de.duenndns.ss1.MemorizingTrustManag anchor?!? Jsted(MemorizingTrustManager.java:392)
at de.duenndns.ssl.MemorizingTrustManager.checkServerTrustadfMamnarizingTrustManager.java:430)
at org.apache.harmony.xnet.provider.jsse.OpensSSLSocketImpl pathl’?l ificateChain(OpenSSLSocketIn
at org.apache.harmony.xnet.provider.jsse.NativeCrypto.SSL_uo_nanasnake(Native Method)
at org.apache.harmony.xnet.provider.jsse.OpenSSLSocketImpl.startHandshake(OpenSSLSocketImpl.java:
at libcore.net.http.HttpConnection.setupSecureSocket(HttpConnection.java:209)
at libcore.net.http.HttpsURLConnectionImpl$HttpsEngine.makeSs1Connection(HttpsURLConnectionImpl.]
at Tibcore.net.http.HttpsURLConnectionImpl$HttpsEngine.connect(HttpsURLConnectionImpl.java:433)
at Tibcore.net.http.HttpEngine.sendSocketRequest(HttpEngine.java:290)
at Tibcore.net.http.HttpEngine.sendRequest(HttpEngine.java:240)
at libcore.net.http.HttpURLConnectionImpl.connect(HttpURLConnectionImpl.java:81)
at Tibcore.net.http.HttpsURLConnectionImpl.connect(HttpsURLConnectionImpl.java:165)
at de.duenndns.mtmexample.MTMExample$2.run(MTMExample.java:101)

Caused by: java.security.cert.CertPathvalidatorException: Trust anchor for certification path not found.

. 15 more

Certificate Verification is too secure!

Certificate Verification in Java 1.4-1.6 rt-solutions.de

SSLSocket / SSLEngine (basic building blocks)

somehow uses X509TrustManager to check certificates
interface X509TrustManager extends TrustManager {
void checkClientTrusted(X509Certificate[], String) throws CertificateException;
void checkServerTrusted(X509Certificate[], String) throws CertificateException;
X509Certificate[] getAcceptedIssuers();

SSLSocket created by SSLSocketFactory
SSLSocketFactory obtained from SSLContext
SSLContext initialized with TrustManager(s)!

void checkServerTrusted(X509Certificate[], String) {

return; // accepts all certificates, buried deep in your production code

}

Certificate Verification: All-or-Nothing solution

Hostname Verification in Java 1.4-1.6 rt-solutions.de

SSLSocket documentation: Yes, sir! We are Secure!
SSLSocket reality: this is an application-layer problem!
Application layer code in Java JRE: HttpsUrlConnection

HttpsUrlConnection.setHostnameVerifier(HostnameVerifier v):

public interface HostnameVerifier {
boolean verify(String hostname, SSLSession session);

To be called right after the TLS handshake
Attention: returns boolean instead of exception!

Hostname Verification in Java 1.4-1.6 rt-solutions.de e

Hostname verification in your own (non-HTTPS) code:

Call hostnameVerifier.verify(hostname, session) right after
completing the TLS handshake...

...and check the return value!
HostnameVerifier hostnameVerifier = ???
Reference implementation in Java?

None available ®
HttpsUrlConnection.getDefaultHostnameVerifier()?

It always returns false ®
»,[Only] if [HttpsUrlConnection’s] standard hostname verification
logic fails, the implementation will call the verify method"

Hostname Verification in Java 1.4-1.6 rt-solutions.de

Use Java’s Secure Socket Extension Reference Guide:

“For example:
public class MyHostnameVerifier implements HostnameVerifier {
public boolean verify(String hostname, SSLSession session) {
// pop up an interactive dialog box
// or insert additional matching logic
if (good_address) {
return true;
} else {
return false;

A\Y

Hostname Verification in Java 1.4-1.6 rt-solutions.de

Sounds easy! Lets write our own HostnameVerifier!
CommonName vs. SubjectAltName(s)
International Domain Name (IDN) encoding
WildCard certificates (think ,*.co.uk™)
IP addresses
IPv6 addresses
Embedded NUL bytes

RFC6125 is 57 pages

Hostname Verification: Apache rt-solutions.de e

Maybe somebody else wrote one?

Apache HttpClient has a working verifier (also in Android)
interface X509HostnameVerifier extends HostnameVerifier

Watch out for the API!
Apache: void, throws SSLException
Java: returns boolean

StrictHostnameVerifier

BrowserCompatHostnameVerifier (less strict with wildcards)
AllowAllHostnameVerifier (not strict at all)

Once again: All-or-Nothing

Hostname Verification: Java 7 rt-solutions.de ‘s

What about Java 7+7?

public class X509ExtendedTrustManager implements X509TrustManager

Extensions to the X509TrustManager interface to support SSL/TLS connection sensitive
trust management.

To prevent man-in-the-middle attacks, hostname checks can be done to verify that the
hostname in an end-entity certificate matches the targeted hostname. TLS does not
require such checks, but some protocols over TLS (such as HTTPS) do. In earlier versions
of the JDK, the certificate chain checks were done at the SSL/TLS layer, and the hostname
verification checks were done at the layer over TLS. This class allows for the checking to
be done during a single call to this class.

public abstract class X509ExtendedTrustManager implements X509TrustManager {
void checkServerTrusted(X509Certificate[], String, Socket)
throws CertificateException;
void checkServerTrusted(X509Certificate[], String, SSLEngine)
throws CertificateException;

Hostname Verification: Java 7 rt-solutions.de “3%5e

Java Runtime checks if passed TrustManager is an
X509ExtendedTrustManager, calls the right methods ©

Must be enabled manually before connecting:
SSLParameters p = sslSocket.getSSLParameters();
p.setEndpointIdentificationAlgorithm("HTTPS");
sslSocket.setSSLParameters(p);

To wrap around regular sockets (,STARTTLS"):
sslSocket = sslContext.getSocketFactory().createSocket(
plainSocket,
hostName, /* €& use actual service/domain name */
plainSocket.getPort(), true);
// set hostname checking parameter, per above

Secure Hostname Verification beyond HTTPS
Still All-or-Nothing

What about Android? rt-solutions.de ‘.'--

Android features SSLCertificateSocketFactory API
Available since API level 1 (on all devices!)
Well-documented security properties (warnings all around)

Development-mode support for ,disabling security"®
.getInsecure() socket factory

"setprop socket.relaxsslcheck yes" to disable (on your phone)
Warnings in LogCat when used insecurely

Certificate and Hostname Verification
Support for development mode
Production: All-or-Nothing with easy toggle

Used by: <5% of TLS-using Android apps

~Hardcoded" Backend Servers rt-solutions.de “3%5e

Using your corporate backend (,,api.mycompany.com")
Well-known server(s)
Well-known certificates
Certificate Pinning: , pin" the server identity to your app
Robustness against Root-/Corporate-CA MitM
Works with self-signed / private CA
Pinning of server/CA public key
Replace (expired) certificate without invalidating pin
Explicit pin expiration mechanism needed
AndroidPinning (moxie); java-pinning (Flowdalic)
Pinning of server/CA certificate
Must update app before changing server cert
6 lines of Java code

https://github.com/moxie0/AndroidPinning
https://github.com/Flowdalic/java-pinning/

~Hardcoded" Backend Servers (2) rt-solutions.de

Pin(s) bundled in a keystore file
keytool -import -trustcacerts -alias ca -file ca.crt -keystore app pins.jks
Enter keystore password: password
Re-enter new password: password

Keystore file used as trust root

KeyStore keystore = KeyStore.getInstance(KeyStore.getDefaultType());
keystore.load(new FileInputStream(keyStoreFile), “password".toCharArray());
TrustManagerFactory tmf = TrustManagerFactory.getInstance("X509");
tmf.init(keystore);

SSLContext sc = SSLContext.getInstance("TLS");

sc.init(null, tmf.getTrustManagers(), new java.security.SecureRandom());

// use 'sc' for your HttpsURLConnection / SSLSocketFactory / ...

Use separate keystores for dev and production
Secure use of self-signed/official certificates

User-Configured Servers rt-solutions.de “3%5e

,Private Cloud" applications (XMPP, contact sync, ...)
Users are ,creative™ with their TLS certificates
Self-signed/expired/wrong hostname (or all of the above)

Trust On First Use/Persistence of Pseudonymity (TOFU/POP)
Store certificate|public-key on first connect
Check with local copy on subsequent connects
Connection error if server credentials change
TOFU key lifetime management mismatches PKI
Distinguish MitM attack from server key update
SSH-like interactive approach required
Challenge: network thread vs. Ul thread

User-Configured Servers (2) rt-solutions.de ‘s

Android: MemorizingTrustManager
Plug-in TrustManager

Interactive dialog for untrusted
certificate / server names
Server could not authenticate as

An d Fo | d I | b ra r'y p rOj ect "www,op-co,de", The certificate is

only valid for:
Open Source (MIT):
https://qgithub.com/geOrg/MemorizingTrustManager/

Accept Mismatching Server Name?

[2] op-co.de

Do you want to connect anyway?

_ Certificate details:
. . . . CN=op-co.de
Fine-grained security model 20140512 20160511
b3:3a:d3:id018f:52:d‘| :35:f5:11:€9:0b:7
N 5:2c:dd:ch:8e:80:c4:69:67:7e:b5:7b:0
d:22:b5:7d:cf:fb:e8:fd
Problem: users do not care! SHA-1:

d3:de:70:ab:6d:3b:dc:6f:67:71:85:ef:0

; A\ . 3:b3:1b:74:6a:2b:7c:1c
Always CIICk ”Always Signed by: CN CAcert Class 3 Root,

P Y I PR FFFamy A [OY N

Always Once Abort

https://github.com/ge0rg/MemorizingTrustManager/

TLS Beyond Root CAs rt-solutions.de

Problem 1: Users do not (want to) care

Problem 2: Root Certificate Authority system flawed
650+ CAs trusted by Windows, Mozilla, ...
Any of them can sign any domain name!
Comodo/UserTrust, DigiNotar, TurkTrust

Certificate Pinning: partial/intermediate solution
Hardcoded pins are inflexible
Does not scale well (TLS terminators, load-balancers, ...)
Easy to screw up, hard to recover

Solution: make pinning more flexible

TLS Beyond Root CAs rt-solutions.de

Trust Assertions for Certificate Keys (TACK)
Independent signing key (TSK) for server certificates
Short-lived pinning of TSK/hostname (max. 30 days)
In-band transmission (hard, but possible to MitM)
TLS Extension (hard to roll out)

Draft RFC (expired in 2013 ®)
No Java implementation available ®

DNS-based Authentication of Named Entities (DANE)
Server/CA identity stored in DNS
Support for Root-CA signed and self-signed certificates
TLS association (TLSA) record
Depends on (hierarchical) DNSSEC infrastructure
dnsjava / DNSSEC4j / dnssecjava - significant work needed!

Summary (for Developers) rt-solutions.de .°:;

Protection Usable for Dev/Production | Code available
agalnst MitM Private Cloud Switch

Just SSLSocket

Apache HttpClient © ® ® ©
SSL Certificate-

SocketFactory O ® © ©
KeyStore file /

java-pinning OO S © ©
AndroidPinning OO ® ® ©
MemorizingTrustM. ® SO © ©
TACK ©O© ® ® ®
DANE @O © © ®

MitM protection against... Private cloud: supports...
© normal attackers © self-signed certs

©O©E© government attackers ©OO expired certs / invalid hostnames

Thank you! Questions? rt-solutions.de “3%5e

Why Eve and Mallory Love Android: An Analysis of SSL (In)Security on
Android, S. Fahl et al.;
2012 ACM Conference on Computer and Communications Security

The Most Dangerous Code in the World: Validating SSL Certificates in Non-
Browser Software, M. Georgiev et al.;
2012 ACM Conference on Computer and Communications Security

Fixing the Most Dangerous Code in the World and follow-up articles,
Will Sargent; 2014 Terse Systems

Trust Assertions for Certificate Keys, M. Marlinspike and T. Perrin;
2013 TLS-WG (draft-perrin-tls-tack-02.txt)

Java/Android SSLSocket Vulnerable to MitM Attacks, G. Lukas;
2014 op-co.de

Georg Lukas <lukas@rt-solutions.de>
rt-solutions.de GmbH, Koln

http://android-ssl.org/files/p50-fahl.pdf
https://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf
http://tersesystems.com/2014/01/13/fixing-the-most-dangerous-code-in-the-world/
http://tack.io/draft.html
http://op-co.de/blog/posts/java_sslsocket_mitm/
mailto:lukas@rt-solutions.de

rt-solutions.de ‘.°--

Reference Material

Enforcing Protocols And Ciphers rt-solutions.de

TLS 1.0 (not recommended since 2006)
Default in Java JRE<S8
Default on Android <5.0 Lollipop

TLS 1.2 must be enabled explicitly before connecting:
sslSocket.setEnabledProtocols(new String[] { "TLSv1l.2" })

Java: requires JRE7

Android: requires 4.1 Jelly Bean (5.0 for async SSLEngine)

Better: filter results from ss1Socket.getSupportedProtocols()
Cipher suite: RC4 (proven insecure in 2013) is everywhere

Default in JRE6

Default on Android 2.3 - 4.4 (2010-2014)

sslSocket.setEnabledCipherSuites(new String[] { "????" })

Suggesting a sane default list almost impossible ®

Some Numbers rt-solutions.de ‘.°'-

jabber.ccc.de Protocol Versions (24h)

mTLSvl =TLSvl.l =TLSv1.2

Some More Numbers rt-solutions.de ‘s

jabber.ccc.de Cipher Suites (24h)

v

m RSA_WITH_AES_128_CBC_SHA DHE_RSA_WITH_AES_128_CBC_SHA
ECDHE_RSA_WITH_AES_256_GCM_SHA384 m DHE_RSA_WITH_AES_256_CBC_SHA

m ECDHE_RSA_WITH_AES_256_CBC_SHA384 = DHE_RSA_WITH_AES_128_GCM_SHA256

m ECDHE_RSA_WITH_AES_256_CBC_SHA m other

