
Java's SSLSocket:
How Bad APIs Compromise Security

Tale of a Frustrated Android Developer

Dr. Georg Lukas <lukas@rt-solutions.de>

mailto:lukas@rt-solutions.de

About the Speaker

 IT Consultant at rt-solutions.de
(ITSec, Smartphone Payment)

 Open Source developer
(embedded Linux, Android)

 Maintainer of yaxim
(yet another XMPP instant messenger)

 Operator of yax.im (Public XMPP service)

 Mobile / Wireless / Security geek

27.11.2014 2

http://yaxim.org/yax.im/

Motivation – Why Am I Here Today

 Development of yaxim – Open-Source XMPP app

 XMPP uses TLS for securing sessions
(logins, chat content)

 yaxim uses Smack for XMPP +
MemorizingTrustManager for TLS

 Added hostname checking to MTM

 no place in Smack to add?!?

27.11.2014 3

Agenda

 A brief history of SSL/TLS

 Java TLS APIs: All-or-nothing security

 Making your (Android) application more secure

 TLS in the Post-Snowden Era

11/27/2014 4

A Brief History of SSL/TLS

 Early 1990ies: Wild West Internet

 Everybody uses telnet, ftp, nfs, …

 1995: Netscape releases SSL 2.0 (Secure Sockets Layer)

 1996: SSL 3.0 (redesign due to security flaws)

 1999: TLS (Transport Layer Security) RFC based on SSLv3

 1999, 2000: HTTP, IMAP, … over TLS, w/ hostname checks

 2001: Sun creates JSSE library with JDK 1.4

…

 2006: TLS 1.1 fixes padding and CBC attack (BEAST, 2011)

 2008: TLS 1.2 fixes timing oracle (Lucky13, 2013)

 2011: Deprecation of SSL… version 2

27.11.2014 5

A Brief History of SSL/TLS (2)

 2011: Hostname checking unified in RFC6125, named…

“Representation and Verification

of

Domain-Based Application Service Identity

Within

Internet Public Key Infrastructure

Using

X.509 (PKIX) Certificates

in the Context of

Transport Layer Security (TLS)”

27.11.2014 6

A Brief History of SSL/TLS (3)

 2012, 2013: CRIME and BREACH attacks on compression

 2014: POODLE attack deprecates SSLv3

SSL

SSL/TLS

TLS
27.11.2014 7

Challenges for Developers

How hard can secure communication with TLS be?

 Certificate Verification

 Is the presented certificate valid (in terms of time)?

 Is it signed by a “trusted” Certificate Authority?

 Hostname Verification

 Does the certificate match the server we want to talk to?

 Development/Production

 TLS stands in the way during application development

 Got a cert for „www-dev.intranet“?

 Users want Self-Signed / Expired / Wrong-hostname Certs

 Typically in „private cloud“ installations

27.11.2014 8

How to use TLS in Java?

11/27/2014 9

public abstract class SSLSocket extends Socket

This class extends Sockets and provides secure socket using protocols such

as the "Secure Sockets Layer" (SSL) or IETF "Transport Layer Security" (TLS)
protocols.

Such sockets are normal stream sockets, but they add a layer of security
protections over the underlying network transport protocol, such as TCP.
Those protections include:

 Integrity Protection. SSL protects against modification of messages by an
active wiretapper.

 Authentication. In most modes, SSL provides peer authentication.
Servers are usually authenticated, and clients may be authenticated as
requested by servers.

 Confidentiality (Privacy Protection). In most modes, SSL encrypts data
being sent between client and server. This protects the confidentiality of
data, so that passive wiretappers won't see sensitive data such as
financial information or personal information of many kinds.

Theory:

https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html

How to use TLS in Java?

11/27/2014 10

public class HttpsURLConnection extends HttpURLConnection

HttpsURLConnection extends HttpURLConnection with support for https-
specific features.

See http://www.w3.org/pub/WWW/Protocols/ and RFC 2818 for more details
on the https specification.

This class uses HostnameVerifier and SSLSocketFactory. There are default
implementations defined for both classes. However, the implementations can
be replaced on a per-class (static) or per-instance basis. All new
HttpsURLConnections instances will be assigned the "default" static values at
instance creation, but they can be overriden by calling the appropriate per-
instance set method(s) before connecting.

Theory:

https://docs.oracle.com/javase/7/docs/api/java/net/HttpURLConnection.html
http://www.w3.org/pub/WWW/Protocols/
http://www.ietf.org/

How to use TLS in Java?

java.security.cert.CertPathValidatorException: Trust anchor for certification path not found.

at org.apache.harmony.xnet.provider.jsse.TrustManagerImpl.checkTrusted(TrustManagerImpl.java:282)

at org.apache.harmony.xnet.provider.jsse.TrustManagerImpl.checkServerTrusted(TrustManagerImpl.java:192)

at de.duenndns.ssl.MemorizingTrustManager.checkCertTrusted(MemorizingTrustManager.java:392)

at de.duenndns.ssl.MemorizingTrustManager.checkServerTrusted(MemorizingTrustManager.java:430)

at org.apache.harmony.xnet.provider.jsse.OpenSSLSocketImpl.verifyCertificateChain(OpenSSLSocketImpl.java:597)

at org.apache.harmony.xnet.provider.jsse.NativeCrypto.SSL_do_handshake(Native Method)

at org.apache.harmony.xnet.provider.jsse.OpenSSLSocketImpl.startHandshake(OpenSSLSocketImpl.java:398)

at libcore.net.http.HttpConnection.setupSecureSocket(HttpConnection.java:209)

at libcore.net.http.HttpsURLConnectionImpl$HttpsEngine.makeSslConnection(HttpsURLConnectionImpl.java:478)

at libcore.net.http.HttpsURLConnectionImpl$HttpsEngine.connect(HttpsURLConnectionImpl.java:433)

at libcore.net.http.HttpEngine.sendSocketRequest(HttpEngine.java:290)

at libcore.net.http.HttpEngine.sendRequest(HttpEngine.java:240)

at libcore.net.http.HttpURLConnectionImpl.connect(HttpURLConnectionImpl.java:81)

at libcore.net.http.HttpsURLConnectionImpl.connect(HttpsURLConnectionImpl.java:165)

at de.duenndns.mtmexample.MTMExample$2.run(MTMExample.java:101)

Caused by: java.security.cert.CertPathValidatorException: Trust anchor for certification path not found.

... 15 more

27.11.2014 11

Practice:

 Certificate Verification is too secure!

anchor?!?

path!?!

Certificate Verification in Java 1.4-1.6

 SSLSocket / SSLEngine (basic building blocks)

 somehow uses X509TrustManager to check certificates
interface X509TrustManager extends TrustManager {

void checkClientTrusted(X509Certificate[], String) throws CertificateException;

void checkServerTrusted(X509Certificate[], String) throws CertificateException;

X509Certificate[] getAcceptedIssuers();

}

 SSLSocket created by SSLSocketFactory

 SSLSocketFactory obtained from SSLContext

 SSLContext initialized with TrustManager(s)!

void checkServerTrusted(X509Certificate[], String) {

return; // accepts all certificates, buried deep in your production code

}

 Certificate Verification: All-or-Nothing solution

27.11.2014 12

Hostname Verification in Java 1.4-1.6

 SSLSocket documentation: Yes, sir! We are Secure!

 SSLSocket reality: this is an application-layer problem!

 Application layer code in Java JRE: HttpsUrlConnection

HttpsUrlConnection.setHostnameVerifier(HostnameVerifier v):

public interface HostnameVerifier {

boolean verify(String hostname, SSLSession session);

}

 To be called right after the TLS handshake

 Attention: returns boolean instead of exception!

27.11.2014 13

Hostname Verification in Java 1.4-1.6

Hostname verification in your own (non-HTTPS) code:

 Call hostnameVerifier.verify(hostname, session) right after
completing the TLS handshake…

 …and check the return value!

 HostnameVerifier hostnameVerifier = ???

 Reference implementation in Java?

 None available

 HttpsUrlConnection.getDefaultHostnameVerifier()?

 It always returns false
„[Only] if [HttpsUrlConnection’s] standard hostname verification
logic fails, the implementation will call the verify method“

27.11.2014 14

Hostname Verification in Java 1.4-1.6

 Use Java’s Secure Socket Extension Reference Guide:

“For example:

public class MyHostnameVerifier implements HostnameVerifier {

public boolean verify(String hostname, SSLSession session) {

// pop up an interactive dialog box

// or insert additional matching logic

if (good_address) {

return true;

} else {

return false;

}

}

}

“

27.11.2014 15

Hostname Verification in Java 1.4-1.6

 Sounds easy! Lets write our own HostnameVerifier!

 CommonName vs. SubjectAltName(s)

 International Domain Name (IDN) encoding

 WildCard certificates (think „*.co.uk“)

 IP addresses

 IPv6 addresses

 Embedded NUL bytes

 …

 RFC6125 is 57 pages

27.11.2014 16

Hostname Verification: Apache

Maybe somebody else wrote one?

 Apache HttpClient has a working verifier (also in Android)
interface X509HostnameVerifier extends HostnameVerifier

 Watch out for the API!

 Apache: void, throws SSLException

 Java: returns boolean

 StrictHostnameVerifier

 BrowserCompatHostnameVerifier (less strict with wildcards)

 AllowAllHostnameVerifier (not strict at all)

 Once again: All-or-Nothing

27.11.2014 17

Hostname Verification: Java 7

What about Java 7+?

public class X509ExtendedTrustManager implements X509TrustManager

Extensions to the X509TrustManager interface to support SSL/TLS connection sensitive
trust management.

To prevent man-in-the-middle attacks, hostname checks can be done to verify that the
hostname in an end-entity certificate matches the targeted hostname. TLS does not
require such checks, but some protocols over TLS (such as HTTPS) do. In earlier versions
of the JDK, the certificate chain checks were done at the SSL/TLS layer, and the hostname
verification checks were done at the layer over TLS. This class allows for the checking to
be done during a single call to this class.

public abstract class X509ExtendedTrustManager implements X509TrustManager {
void checkServerTrusted(X509Certificate[], String, Socket)

throws CertificateException;
void checkServerTrusted(X509Certificate[], String, SSLEngine)

throws CertificateException;

….

}

27.11.2014 18

Hostname Verification: Java 7

 Java Runtime checks if passed TrustManager is an
X509ExtendedTrustManager, calls the right methods

 Must be enabled manually before connecting:
SSLParameters p = sslSocket.getSSLParameters();

p.setEndpointIdentificationAlgorithm("HTTPS");

sslSocket.setSSLParameters(p);

 To wrap around regular sockets („STARTTLS“):
sslSocket = sslContext.getSocketFactory().createSocket(

plainSocket,

hostName, /* use actual service/domain name */

plainSocket.getPort(), true);

// set hostname checking parameter, per above

 Secure Hostname Verification beyond HTTPS

 Still All-or-Nothing

27.11.2014 19

What about Android?

 Android features SSLCertificateSocketFactory API

 Available since API level 1 (on all devices!)

 Well-documented security properties (warnings all around)

 Development-mode support for „disabling security“

 .getInsecure() socket factory

 "setprop socket.relaxsslcheck yes" to disable (on your phone)

 Warnings in LogCat when used insecurely

 Certificate and Hostname Verification

 Support for development mode

 Production: All-or-Nothing with easy toggle

 Used by: <5% of TLS-using Android apps

27.11.2014 20

„Hardcoded“ Backend Servers

 Using your corporate backend („api.mycompany.com“)

 Well-known server(s)

 Well-known certificates

 Certificate Pinning: „pin“ the server identity to your app

 Robustness against Root-/Corporate-CA MitM

 Works with self-signed / private CA

 Pinning of server/CA public key

 Replace (expired) certificate without invalidating pin

 Explicit pin expiration mechanism needed

 AndroidPinning (moxie); java-pinning (Flowdalic)

 Pinning of server/CA certificate

 Must update app before changing server cert

 6 lines of Java code

27.11.2014 21

https://github.com/moxie0/AndroidPinning
https://github.com/Flowdalic/java-pinning/

„Hardcoded“ Backend Servers (2)

 Pin(s) bundled in a keystore file
keytool -import -trustcacerts -alias ca -file ca.crt -keystore app_pins.jks

Enter keystore password: password

Re-enter new password: password

 Keystore file used as trust root
KeyStore keystore = KeyStore.getInstance(KeyStore.getDefaultType());

keystore.load(new FileInputStream(keyStoreFile), “password".toCharArray());

TrustManagerFactory tmf = TrustManagerFactory.getInstance("X509");

tmf.init(keystore);

SSLContext sc = SSLContext.getInstance("TLS");

sc.init(null, tmf.getTrustManagers(), new java.security.SecureRandom());

// use 'sc' for your HttpsURLConnection / SSLSocketFactory / ...

 Use separate keystores for dev and production

 Secure use of self-signed/official certificates

27.11.2014 22

User-Configured Servers

 „Private Cloud“ applications (XMPP, contact sync, …)

 Users are „creative“ with their TLS certificates

 Self-signed/expired/wrong hostname (or all of the above)

 Trust On First Use/Persistence of Pseudonymity (TOFU/POP)

 Store certificate|public-key on first connect

 Check with local copy on subsequent connects

 Connection error if server credentials change

 TOFU key lifetime management mismatches PKI

 Distinguish MitM attack from server key update

 SSH-like interactive approach required

 Challenge: network thread vs. UI thread

27.11.2014 23

User-Configured Servers (2)

 Android: MemorizingTrustManager

 Plug-in TrustManager

 Interactive dialog for untrusted
certificate / server names

 Android library project

 Open Source (MIT):

https://github.com/ge0rg/MemorizingTrustManager/

 Fine-grained security model

 Problem: users do not care!

 Always click „Always“

27.11.2014 24

https://github.com/ge0rg/MemorizingTrustManager/

TLS Beyond Root CAs

 Problem 1: Users do not (want to) care

 Problem 2: Root Certificate Authority system flawed

 650+ CAs trusted by Windows, Mozilla, …

 Any of them can sign any domain name!

 Comodo/UserTrust, DigiNotar, TurkTrust

 Certificate Pinning: partial/intermediate solution

 Hardcoded pins are inflexible

 Does not scale well (TLS terminators, load-balancers, …)

 Easy to screw up, hard to recover

 Solution: make pinning more flexible

27.11.2014 25

TLS Beyond Root CAs

 Trust Assertions for Certificate Keys (TACK)

 Independent signing key (TSK) for server certificates

 Short-lived pinning of TSK/hostname (max. 30 days)

 In-band transmission (hard, but possible to MitM)

 TLS Extension (hard to roll out)

 Draft RFC (expired in 2013)

 No Java implementation available

 DNS-based Authentication of Named Entities (DANE)

 Server/CA identity stored in DNS

 Support for Root-CA signed and self-signed certificates

 TLS association (TLSA) record

 Depends on (hierarchical) DNSSEC infrastructure

 dnsjava / DNSSEC4j / dnssecjava – significant work needed!

27.11.2014 26

Summary (for Developers)

Protection
against MitM

Usable for
Private Cloud

Dev/Production
Switch

Code available

Just SSLSocket

Apache HttpClient

SSLCertificate-
SocketFactory

KeyStore file /
java-pinning

AndroidPinning

MemorizingTrustM.

TACK

DANE

27.11.2014 27

MitM protection against… Private cloud: supports…

 normal attackers self-signed certs

 government attackers expired certs / invalid hostnames

Thank you! Questions?

 Why Eve and Mallory Love Android: An Analysis of SSL (In)Security on
Android, S. Fahl et al.;
2012 ACM Conference on Computer and Communications Security

 The Most Dangerous Code in the World: Validating SSL Certificates in Non-
Browser Software, M. Georgiev et al.;
2012 ACM Conference on Computer and Communications Security

 Fixing the Most Dangerous Code in the World and follow-up articles,
Will Sargent; 2014 Terse Systems

 Trust Assertions for Certificate Keys, M. Marlinspike and T. Perrin;
2013 TLS-WG (draft-perrin-tls-tack-02.txt)

 Java/Android SSLSocket Vulnerable to MitM Attacks, G. Lukas;
2014 op-co.de

Georg Lukas <lukas@rt-solutions.de>

rt-solutions.de GmbH, Köln

27.11.2014 28

http://android-ssl.org/files/p50-fahl.pdf
https://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf
http://tersesystems.com/2014/01/13/fixing-the-most-dangerous-code-in-the-world/
http://tack.io/draft.html
http://op-co.de/blog/posts/java_sslsocket_mitm/
mailto:lukas@rt-solutions.de

Reference Material

27.11.2014 29

Enforcing Protocols And Ciphers

 TLS 1.0 (not recommended since 2006)

 Default in Java JRE<8

 Default on Android <5.0 Lollipop

 TLS 1.2 must be enabled explicitly before connecting:

sslSocket.setEnabledProtocols(new String[] { "TLSv1.2" })

 Java: requires JRE7

 Android: requires 4.1 Jelly Bean (5.0 for async SSLEngine)

 Better: filter results from sslSocket.getSupportedProtocols()

 Cipher suite: RC4 (proven insecure in 2013) is everywhere

 Default in JRE6

 Default on Android 2.3 – 4.4 (2010-2014)

sslSocket.setEnabledCipherSuites(new String[] { "????" })

 Suggesting a sane default list almost impossible

27.11.2014 30

Some Numbers

jabber.ccc.de Protocol Versions (24h)

TLSv1 TLSv1.1 TLSv1.2

27.11.2014 31

Some More Numbers

jabber.ccc.de Cipher Suites (24h)

RSA_WITH_AES_128_CBC_SHA DHE_RSA_WITH_AES_128_CBC_SHA

ECDHE_RSA_WITH_AES_256_GCM_SHA384 DHE_RSA_WITH_AES_256_CBC_SHA

ECDHE_RSA_WITH_AES_256_CBC_SHA384 DHE_RSA_WITH_AES_128_GCM_SHA256

ECDHE_RSA_WITH_AES_256_CBC_SHA other

27.11.2014 32

