
 Stardate: 92492.76

(Mobile SSL Failures)(Mobile SSL Failures)

Who are these guys?Who are these guys?

Penetration Testers at LinkedIn

Tony Trummer - Staff Security Engineer aka “SecBro”

Tushar Dalvi - Sr. Security Engineer & Pool Hustler

A Private Little War

Our employer generally does not have prior Our employer generally does not have prior
knowledge of, condone, support or otherwise knowledge of, condone, support or otherwise

endorse our researchendorse our research

The MenagerieThe Menagerie
{ Apps are mash-ups of native and web code

{ Java, Objective C, Swift, etc.

{ Developers control app security settings

BasicsBasics

TLS provides several security features

{ Encryption

{ Authenticity

{ Integrity

In apps, unlike browsers, whether you see a
certificate warning is up to the app developer.

Wolf in the FoldWolf in the Fold
{ TLS is really the ONLY protection against
Man-in-the middle (MitM) attacks

{ MitM is significantly easier to exploit
against mobile devices

Sprechen sie TLS?

Tomorrow Is Yesterday Tomorrow Is Yesterday

Before dismissing the idea of large-
scale or supply-chain attacks...

{Recent reports of pre-installed
trojans on low-end Android devices

{In 2013, Nokia was found to be
performing MitM on customer traffic,
reportedly for performance reasons

{In 2013, reports surfaced claiming
that the NSA and GCHQ (“Flying
Pig”) were actually performing real-
world MitM attacks

The Immunity SyndromeThe Immunity Syndrome

Infosec folks often roll their eyes when they
read statements on sites or in apps that tout
TLS use and how big their keys are

Journey to BabelJourney to Babel

One night, after a few drinks, we decided to
test some apps, starting with proxying their
web requests

Into DarknessInto Darkness

Damn it, Jim!Damn it, Jim!

First aspect of certificate First aspect of certificate
validationvalidation

The app or OS must verify the certificate is
cryptographically signed by the private key
of a Certificate Authority that is pre-trusted

Forget Something?Forget Something?

The app developers had disabled Certificate
Authority validation

Tony Tushar

A Taste of ArmageddonA Taste of Armageddon

The Trouble The Trouble
with Tribbleswith Tribbles

Testing for CA validationTesting for CA validation
{ Configure device to use proxy

{ Configure BurpSuite's proxy listener
to “Generate a CA-signed per-host
certificate”

{ DO NOT install the proxy's CA
certificate on the test device

{ Verify you see a certificate warning
in the native mobile browser

{ Step through each section of the app

{ If you see HTTPS traffic, in
Burpsuite, the app failed

Second aspect of Second aspect of
validationvalidation

Does the Subject Common or
Alternative name match the
hostname of the site you're visiting?

By any other nameBy any other name

Testing for properTesting for proper
hostname validationhostname validation

{ Obtain a valid certificate for any domain
other than the target, signed by a CA the
device already trusts

{ Configure your device to use a proxy

{ Configure proxy listener settings to
 “Use a custom certificate”

{ Verify you see a certificate warning in the
native mobile browser

{ Step through each section of
the mobile app

{ If you see HTTPS traffic, the app failed

The Naked TimeThe Naked Time
{Credit card numbers

(RockBot)

{Passwords, session
cookies, etc.

Dagger of the mindDagger of the mind
{ Unencrypted credit

card information

{ Tier 1 PCI merchant

{ 10 million+ installations

Court MartialCourt Martial
 FTC vs.
Fandango & Credit Karma

{ One of the major flaws cited in the
suit was failure to validate SSL
certificates on mobile applications

{ Agreed to “establish
comprehensive security programs”

{ Agreed to “undergo independent
 security assessments every other
year for 20 years”

{ Scolded publicly for not keeping “their
privacy promises to consumers”

SSL session cachingSSL session caching

{ During the initial
handshake the
certificate is validated

{ Subsequent client
requests re-use the
previous handshake
and do not re-validate
the certificate

The Enemy WithinThe Enemy Within

How would a bad guy get my
phone?

Why is it more likely on
mobile?

Patterns of ForcePatterns of Force

If I have physical access,
couldn't I just...

{ Install malicious app

{ Access your data

Turnabout IntruderTurnabout Intruder

Since SSL session caching
only checks the certificate
once, you only need it on
the device for as long it
takes you to make the first
connection, after which you
can delete it

The City on the The City on the
Edge of ForeverEdge of Forever

{ Server decides how long to
accept the cached session

{ In other words, the bad guy
gets to decide how long to
accept the cached session...

{ We refer to this feature as
“EverPWN”

Shields Up!Shields Up!

{ Review your code
{ Implement policy
{ Test pre-release
{ Train developers

Shields Up!Shields Up!

{ Review your code
In Android, investigate these:
{ TrustManager
{ SSLSocket
{ SSLSocketFactory getInsecure
{ HostNameVerifier

In iOS, investigate these areas:
{ _AFNETWORKING_ALLOW

_INVALID_SSL_CERTIFICATES_
{ SetAllowsAnyHTTPSCertificate
{ kCFStreamSSLAllowsAnyRoot

Shields Up!Shields Up!
{ Certificate Pinning

{ Dev and prod signing
certificates are required to
be different in both iOS and
Android

{ Build a trust manager that
only allows certificate
validation to be disabled in
dev builds.

Live Long and ProsperLive Long and Prosper

Contact and testing instructions:

http://www.secbro.com

Tony Trummer:

http://www.linkedin.com/in/tonytrummer

@SecBro1

Tushar Dalvi:

http://www.linkedin.com/in/tdalvi

@TusharDalvi

R.I.P Reggie
Destin

 Stardate: 92492.76

(Mobile SSL Failures)(Mobile SSL Failures)

All right people, our presentation is on the topic of mobile
SSL failures. We are really excited to be here at DeepSec
and this is my second talk ever at a security conference. Our
plan, is to showcase, in the next 45 mins or so, some of the
systemic issues we found in popular mobile applications and
operating systems. Also, we will be presenting a lesser
known technique of achieving almost undetectable and
persistent man-in-the-middle capabilities in certain iOS and
Android applications during this presentation.

Who are these guys?Who are these guys?

Penetration Testers at LinkedIn

Tony Trummer - Staff Security Engineer aka “SecBro”

Tushar Dalvi - Sr. Security Engineer & Pool Hustler

 So a little bit about our background...I am Tushar Dalvi, I
have with me, Tony Trummer, we are both Security
Engineers at LinkedIn, responsible for penetration testing
and vulnerability research, but like most security folks, we
spend most of our time herding cats.

Previously, I worked at McAfee as a Penetration tester, after
getting my Masters Degree from John Hopkins in Security
Informatics.

Tony, is a serial drop-out, comes from a military and
networking background and has nearly 20 years experience
in IT.

A Private Little War

Our employer generally does not have prior Our employer generally does not have prior
knowledge of, condone, support or otherwise knowledge of, condone, support or otherwise

endorse our researchendorse our research

Just to be clear, this presentation is purely part of our
personal research work, and our opinion does not
necessarily reflect the views of our employer.

The MenagerieThe Menagerie
{ Apps are mash-ups of native and web code

{ Java, Objective C, Swift, etc.

{ Developers control app security settings

 Alright, the premise of this presentation, is that mobile
applications have come a long way and offer so much more
control to the developer to define their behavior.

In most cases, an application would be written for several
different platforms; You have iOS, Android, Windows Phone
and so on. Of the problem apps we'll show, most were
Android, there were a few for iOS, but surprisingly, we didn't
find any on the Windows Phone.

Since each one of these platforms have differences in the
way they can do the exact same thing, the developers need
to have a clear understanding of the implications that come
with this flexibility, when trying to implement features across
different platforms.

This is especially important, when it comes to security
controls, such as TLS...

We don't normally mention George Lucas in a Star Trek
presentation...but when we do it's Georg Lukas (CLICK),
who presented just yesterday at DeepSec and how many of
the issues he was warning about, actually have already
manifested themselves as vulnerabilities in popular mobile
applications.

Since many of you may have attended that talk, or are
otherwise already familiar with SSL, we'll just quickly touch
on the basics..

BasicsBasics

TLS provides several security features

{ Encryption

{ Authenticity

{ Integrity

In apps, unlike browsers, whether you see a
certificate warning is up to the app developer.

So, TSL provides several key benefits:

 1) Secrecy or encryption, and

 2) Authenticity, which guarantees the identity of the entity
you are trying to connect to

 3) Integrity – knowing nothing has changed in transit

 Typically, in the event of a handshake failure (CLICK),
browsers show a certificate warning before allowing you to
continue, but in mobile applications, this safeguard is at the
mercy of the developers.

Wolf in the FoldWolf in the Fold
{ TLS is really the ONLY protection against
Man-in-the middle (MitM) attacks

{ MitM is significantly easier to exploit
against mobile devices

Sprechen sie TLS?

TLS is the only real protection against MITM attacks.

MitM attacks are are significantly easier on mobile devices, for
multiple reasons, like:

The fact that most users' cellphone data plans are not unlimited and
the connection speed is slower over cellular networks, so they often
opt to use open WiFi networks whenever possible.

Cell phone providers, actually encourage this to save bandwidth.
That is why, for example, your iPhone automatically connects to any
SSID named ATTWIFI.

Some previous research has shown that even without you trying to
actively connect to a WiFi network, mobile devices will automatically
try to connect to previously known or pre-configured SSIDs, such as
NETGEAR, LINKSYS, etc. Also, the Snoopy framework is designed
specifically to look for WiFi probes from devices and imitate
whatever SSID they were looking for.

We'll show why if an attacker can lure a victim to connect to the
same network as them, or worse yet, one they control, it's basically
game over

Add to this, the fact that researchers recently claim to have cracked
WPA2 encryption and bad guys have the opportunity to do some
serious damage

Tomorrow Is Yesterday Tomorrow Is Yesterday

Before dismissing the idea of large-
scale or supply-chain attacks...

{Recent reports of pre-installed
trojans on low-end Android devices

{ In 2013, Nokia was found to be
performing MitM on customer traffic,
reportedly for performance reasons

{ In 2013, reports surfaced claiming
that the NSA and GCHQ (“Flying
Pig”) were actually performing real-
world MitM attacks

Many of you may be thinking, “what are the chances of a
large scale supply chain attacks taking place”?

Well, there have been recent reports regarding pre-installed
trojans on low-end Android devices and as far as MitM
specifically, Nokia was found to be doing exactly this in 2013
. They reportedly did this for performance reasons, but think
about that for a second...

One of the leading device manufacturers, was actively
intercepting and decrypting their customer traffic...

Also, let's not forget, that according to allegedly leaked
documents, the NSA and GCHQ were both actually found to
be using similar MitM techniques to snoop on SSL traffic

The Immunity SyndromeThe Immunity Syndrome

Infosec folks often roll their eyes when they
read statements on sites or in apps that tout
TLS use and how big their keys are

So, how do companies show their customers that they care
about SSL? Many, just put up these logos on their website,
without considering what they are actually promising. Naive
consumers, have a reasonable expectation, that these signify
their data is immune to eavesdropping.

However, as we know, encryption is just a part of security, not
the end of it.

We're not lawyers, but it turns out, that stating that you use
TLS on your communications, in this way, or with other
disclaimers, is actually a legally binding contract, which we
will discuss later.

Journey to BabelJourney to Babel

One night, after a few drinks, we decided to
test some apps, starting with proxying their
web requests

So, one night, after a few drinks, we decided to start
hacking some apps.

As usual, we started by examining

 their web requests, by using an HTTP proxy

Then we noticed some strange behavior

Into DarknessInto Darkness

Tushar: Tony will now discuss the details of what we
found

DO NOT CLICK

Tony: Thanks Tushar. Hello everyone! Hope you're
having a good time at DeepSec, so far.

Damn it, Jim!Damn it, Jim!

Before getting into exactly what we found, I wanted to give a
little historical context around our testing.

We started this in February and based on our results, we
somewhat presumptively declared this was the year that SSL
would die.

After GoToFail, Heartbleed and now POODLE, it turns out we
were more correct than we could have possibly known...

First aspect of certificate First aspect of certificate
validationvalidation

The app or OS must verify the certificate is
cryptographically signed by the private key
of a Certificate Authority that is pre-trusted

In order for TLS to validate the identity of the remote side of the conversation, it
checks that the certificate received is cryptographically signed with the private
key of a Certificate Authority, who's public key corresponds with one in the app
or OS's store of trusted authorities. Companies like Verisign, Digicert or
GoDaddy are generally included automatically in these stores, so nothing needs
to be done to accept certificates signed by them.

However, when proxing mobile app TLS requests, you need to install the HTTP
proxy's CA certificate on the device, since it is generally not already trusted. For
Burpsuite, which is what we use to test, this is the Portswigger CA.

The entire trust model falls apart, if for example, an attacker could create their
own CA, then generate a certificate for www.google.com and have the victim's
browser or app accept it

Having established these facts, what we initially found, was that we were still
seeing traffic in our proxy, from many apps, despite not having installed the
Portswigger CA certificate on the device, which should not be the case.

Forget Something?Forget Something?

The app developers had disabled Certificate
Authority validation

Tony Tushar

It turns out, the reason we were still seeing TLS traffic, was
that sometime during the development lifecycle, the
validation of CAs was disable. This may have been due to
the developer not understanding what they were doing or
simply because they disabled validation, so they could proxy
requests for testing purposes, but then forgot to re-enabled it
prior to releasing to production. Since you can install CA
certs on devices or emulators for testing, there is no good
reason to do it in code.

Giving the developer the benefit of the doubt that they just
forgot, it still underscores the fact that just because you can
do something in code, doesn't mean you should...

So everyone is clear, at this point an individual attacker could
have gone down to the local coffee shop or any place with
public WiFi, joined the network, gained MitM position (using
DNS poisoning or ARP spoofing) or alternatively, gone
anywhere and just setup their own hotspot with a common
SSID, or even their own femtocell and just waited for victims
to connect. They would then be able to intercept and decrypt
all the vulnerable SSL traffic for these apps...

Obviously a governmental agency, ISP, etc could also have
inserted a MitM proxy somewhere at a higher level on the
Interwebz and done this as well.

So, after identifying this issue, we did some research on the
topic and were told of similar issues that were discussed in a
paper titled “The Most Dangerous Code in the World”, which I
highly recommend you read if you haven't. Despite the prior
work, we decided to continue looking into this issue and how
common it was.

A Taste of ArmageddonA Taste of Armageddon

Disclaimer: Since there are fake apps in the Play Store and some
companies failed to respond or confirm our findings, we'll generally
stick to showing the icons of the apps, rather than mentioning the
companies by name. If you have any of these on your device, make
sure you update them.

We obviously tried to focus on the top apps, by download count, that
led to interception of passwords, significant session tokens, credit
cards and/or sensitive PII, but trying not to get sued, unless we
specifically state what could be pilfered, we're just asserting there
was an issue. The impact varied between apps and we don't have
time to discuss every finding in detail. It turned out that about 10% of
the top Android and handful of iOS apps we tested were vulnerable
in a meaningful way and without warning the user. Some apps were
not included, because the impact wasn't apparently significant or
they at least, gave the user a warning message.

Again, we focused on the top apps and this was just a “taste”...

The Trouble The Trouble
with Tribbleswith Tribbles

Unfortunately, like Tribbles, bad coding practices just seem to propagate
uncontrollably...

And while the apps written for Windows phone may have faired well, Microsoft's apps
for the other platforms...not so much...

Don't get me wrong, I'm not a Microsoft basher, but we did find more of their apps with
these issues than any other company.

Now, the Google Cloud Messaging icon represents the service used by nearly every
Android app and I'm told, Chrome extension, to register with Google for receiving
push notifications, but is only half of the equation, since they need to also register with
the app creator's messaging server. Google recommends not using GCM for sensitive
information, so this vulnerability's impact would vary on an app by app basis,
depending on whether that warning was heeded and we were unable to develop an
exploit scenario for this ourselves, but thought it was noteworthy none-the-less.

Taking a look at the other apps we found, you shouldn't have anything to worry about,
so long as you didn't happen to buy some electronics, books, movies or shoes, bank,
manage your investment portfolio, access your home security system, your networking
vendor support site... your helpdesk, the country's largest payroll provider...use one of
numerous vulnerable two-factor authenticators, have a conference call, access your
ISP account, corporate VPN, or log in to your M$ account when in your Bing or
Outlook.com app.

By the way, of all the companies shown here, the Zappos staff were our favorite to
work with. They understood the issue, without me needing to explain how certificates
worked, unlike some companies, and seemed genuinely appreciative for our
notification. Hey, we even got free shoes!

Testing for CA validationTesting for CA validation
{ Configure device to use proxy

{ Configure BurpSuite's proxy listener
to “Generate a CA-signed per-host
certificate”

{ DO NOT install the proxy's CA
certificate on the test device

{ Verify you see a certificate warning
in the native mobile browser

{ Step through each section of the app

{ If you see HTTPS traffic, in
Burpsuite, the app failed

We briefly wanted to walk through how you test for this.

This information will be our site, secbro.com, so don't worry if
you can't write it all down now.

Basically, you can use Burpsuite's default settings for the
proxy listener, just don't install the CA certificate on the
device first.

You should verify that you see a certificate warning when you
visit a secure site in the mobile browser, before testing apps,
just to verify you are hitting the proxy and that your CA cert is
NOT trusted already, especially if you previously had the
same Portswigger CA cert installed on the device

After doing this, you'll want to step through the different
functionalities of the app and if you still see HTTPS traffic in
your proxy, the app failed

So of course, after finding these problem apps, we wondered
what else could go wrong...

Second aspect of Second aspect of
validationvalidation

Does the Subject Common or
Alternative name match the
hostname of the site you're visiting?

Again, so that we're all on the same page, another part of the
authenticity aspect of SSL is that we verify the certificate we
receive is actually for the site you are trying to visit.

This is done by matching the hostname of the remote side to
either the Subject: Common or Alternative Name(s) on the
certificate

Again, the entire trust model falls apart if an attacker could
register their malicious domain, get a certificate for it and use
this to intercept any app's SSL traffic, regardless of the
destination domain.

For example, if the certificate for www.nsa.gov was accepted
when trying to connect to www.torproject.org,someone is
going to have a bad day.

By any other nameBy any other name

While most of these apps correctly validated the CA, none of them,
verified the certificate's CN or AN, so we were able to intercept and
decrypt the vulnerable SSL traffic, for all of them, using a certificate
issued for one of our domains.

To be clear, the cert we used for testing, was signed by StartSSL.com's
CA, which is trusted by Android and iOS, out of the box, so we didn't
need to add it to the device first.

Again, we see several significant financial applications, tax software, the
leading blog software's admin app, a domain registrar and SSL certificate
issuer app ironically, an ISP, security software, a cable TV co., travel
sites, one of the biggest Chinese Internet companies, the California DMV,
who, if your a CA resident, has all your PII and again, multiple Microsoft
applications.

Note: if you see an app on multiple slides, it is because it failed in multiple
ways.

Disclaimer #2: Oracle wanted us to let you know they, opted for the
nuclear option and pulled the Oracle Now application from the store.
(CLICK). As a pentester, killing bad apps is one of my favorite things to
do. Citrix told us the “Receiver” app was some sort demo and no real
data was ever at risk.(CLICK)

We also had an “interesting” experience with AT&T, where they didn't
respond for several months, then one day, out of the blue, emailed to say
they couldn't reproduce the issue on their MyAT&T app...the first working
day after their latest release. Yeah, umm, ok.., sure. Since I didn't want to
mess up my slides, I'll just replace them with a few more apps we found.
(CLICK) Yahoo took several months to respond regarding their “Mail” app
and finally came back with “it looks good now...”, (CLICK) so again..yeah,
ok

Testing for properTesting for proper
hostname validationhostname validation

{ Obtain a valid certificate for any domain
other than the target, signed by a CA the
device already trusts

{ Configure your device to use a proxy

{ Configure proxy listener settings to
 “Use a custom certificate”

{ Verify you see a certificate warning in the
native mobile browser

{ Step through each section of
the mobile app

{ If you see HTTPS traffic, the app failed

Again, these instructions will be on secbro.com, but to quickly review
how to test for this.

First, get a valid certificate for any domain.

Startssl.com is a good source for free ones and it is already in the
trust store of most devices.

The main difference here is you need to configure Burpsuite's proxy
listener to the “Use a custom certificate” setting. If you see HTTPS
traffic while stepping through the app, it failed

Again, we asked ourselves, what else could be wrong and we
suspected some applications or devices may also accept revoked
and/or expired certificates, but didn't pursue these further, because
this was about the time iOS's gotofail bug was made public, so we
needed to wait for that to be fixed and there was an Arstechnica
article indicating others may have been performing similar research.

We did, however, find another way, in which some apps failed to use
SSL correctly...

The Naked TimeThe Naked Time
{Credit card numbers

(RockBot)

{Passwords, session
cookies, etc.

That was by not using it at all...well at least, not in some
important HTTP requests

This included leaking session cookies from Quora, a popular
information sharing application.

The entire registration process for Cisco's WebEx, including
password creation, was not being encrypted.

Usernames and passwords not being encrypted for the
Angie's List Business Center application

Rockbot, which is basically a modern-day jukebox, that
accepts credit cards in the application, but failed to encrypt
them in transit.

Then there was one that we found particularly interesting and
in our opinion, was PWNIE worthy...

Dagger of the mindDagger of the mind
{ Unencrypted credit

card information

{ Tier 1 PCI merchant

{ 10 million+ installations

Now, we really hope you enjoy the animations on this slide,we turned
down thousands of dollars to show it to you... so we wanted to
ensure we got our money's worth

To fail epically, you obviously would need to send unencrypted credit
cards as well, but the key difference here (CLICK) is that they are a
Tier 1 PCI merchant.

Now, I'm pretty sure PCI has a checkbox somewhere for using SSL.

Unfortunately, that Tier 1 status means they process a lot of credit
card transactions. I mean to have a truly epic fail, you need scale.
(CLICK) Their app had over 10 million installations..

So, who forgot that HTTPS, ends with an S?

(CLICK) REDBOX PAUSE (CLICK)

If you can't see the screen shot, it clearly shows the POST to save
your credit card information hitting a plain-text HTTP link

And the second screen shot shows the full 16 digit number in the
POST body

So that wraps up the problem applications we found. We know there
are more, but that seemed to be enough to demonstrate the need for
improvements in the Mobile SDLC with regards to transport layer
encryption.

We encourage anyone running these apps to update immediately
and ideally these companies would notify their customers of potential
data leakage, force upgrade or removal of and invalidate any app
versions they were unable to fix. This also should serve as a
reminder the SDLC for Mobile is not the same for web, because you
can't cover up these mistakes with a simple code change on the
server side in most cases.

Court MartialCourt Martial
 FTC vs.
Fandango & Credit Karma

{ One of the major flaws cited in the
suit was failure to validate SSL
certificates on mobile applications

{ Agreed to “establish
comprehensive security programs”

{ Agreed to “undergo independent
 security assessments every other
year for 20 years”

{ Scolded publicly for not keeping “their
privacy promises to consumers”

Getting back to those SSL usage disclaimers made by many
sites and apps that Tushar previously mentioned...

During our research, we found out that there were previously
FTC suits against Credit Karma and Fandango, in which the
SSL usage claims, combined with the failure to perform
proper certificate validation, were cited as violations central
to the suits

The companies wound up settling with the FTC and in
addition to being publicly scolded for breaking security
promises to their customers, were compelled to institute
“comprehensive” security programs, which they probably
should have had in the first place and are now subjected to
additional security audits for 20 years...! This usually also
means that any further infractions during this time period will
result in even harsher penalties, since it wouldn't be there
“first offense”

If this isn't your first security conference, you had to know this
slide was coming

Sorry Bones, but we can't leave without giving the tin-foil hat
crowd something to think about...

SSL session cachingSSL session caching

{ During the initial
handshake the
certificate is validated

{ Subsequent client
requests re-use the
previous handshake
and do not re-validate
the certificate

So, in an effort to make this SSL thing a bit more efficient and faster,
someone decided that it was a good idea to skip certificate validation
on all but the first handshake request

This allows the apps that use this feature, Google Maps
being an example of one, to store a session identifier that
allows for resumption of previously validated SSL sessions

We thought to ourselves, what would happen if a bad guy
made that first connection? Basically, why trust on first use
isn't always a great idea.

The Enemy WithinThe Enemy Within

How would a bad guy get my
phone?

Why is it more likely on
mobile?

You may think it is unlikely that Romulans would ever have physical
to your device...(CLICK)

That's “logical”, unless you travel and have to get by the TSA or
customs, get detained by law enforcement, have a jealous girlfriend,
got your phone from, or have to give your phone to your IT
department, remember that the tech at the cell phone store already
had access and so did numerous folks in the supply chain.
Remember, Nokia did this before and you can bet someone will do it
again in the future.

You could also drink too much this weekend and “misplace your
phone”. I'm sure your hacker buddies wouldn't mess with it, right?

I expect the skeptical amongst you may say, I would double-check
everything on the device, before I used a phone that I “lost”, but in a
moment I'll show why that isn't necessarily going to be of any help.

(CLICK)

The reason this is more problematic on mobile devices is because
not only are there are more opportunities for people to get access to
your device, most people use weak screen-lock passwords, if at any
at all, new screen-lock bypasses come out often, smudge attacks
are surprisingly effective and if you've ever used your device in a
building with security cameras, like the airport, or casino, or near
someone wearing Google glass... Someone already has your PIN

You might say biometrics are the answer, but I'm willing to bet the
cops already have many of your fingers prints...

Patterns of ForcePatterns of Force

If I have physical access,
couldn't I just...

{ Install malicious app

{ Access your data

So, you might say, well if the space Nazis, or any attacker gets
access to my device,

Couldn't they just install malware, etc?

- Yes, but malware can be detected by security software and a
malicious app is probably not going to unnoticed for long

You might also ask, couldn't they just get the data they wanted off
the device directly?

If the apps are not foolish enough to store data on the SDCARD, this
should require a rooted device. If the device isn't already rooted,
rooting it, might require wiping the device. If you're device is already
running rooted, well, you're already screwed...

Also, what if the attacker wanted to access data that isn't on the
device yet?

Lastly, it takes much less time to install a cert than an app. A
certificate can be installed and deleted in seconds.

You may ask why I mentioned deleted? Why does that matter?

Turnabout IntruderTurnabout Intruder

Since SSL session caching
only checks the certificate
once, you only need it on
the device for as long it
takes you to make the first
connection, after which you
can delete it

For both iOS and Android, you can delete the MitM certificate
as soon as the first connection is made and there is virtually
no way for anyone to know it was ever there...(CLICK)

Even that “Network may be monitored” warning that shows
up on modern Android versions, to let you know when a User
certificate is installed, goes away.

On iOS you'll still be able to intercept traffic until the device
reboots, but interestingly on Android, this behavior is slightly
different...as we'll explain shortly

The City on the The City on the
Edge of ForeverEdge of Forever

{ Server decides how long to
accept the cached session

{ In other words, the bad guy
gets to decide how long to
accept the cached session...

{ We refer to this feature as
“EverPWN”

A feature of session caching seems to be that the server gets
to choose how long they to accept that cached session...

We've verified sessions can be maintained in excess of 24
hours, but unless there is some limit we've missed, I'm pretty
sure the bad guy would choose to be able to intercept your
traffic forever, although 2 years is probably the same on
mobile devices, since that's about how long anyone actually
keeps them.

So getting back to the Android behavior, unfortunately, the
session cache files are persistent and survive reboots!

The only evidence of this state, is the certificate information
that appears to be in the cache file, but reading it requires
root on the device.

So, for as long as you can maintain the MitM postion, you
have a persistent, virtually undetectable MitM against any
app that uses this feature on Android. (CLICK)

We refer to this as “EverPWN” ing

There isn't much a user can do to prevent this, should they
lose physical control of their device, without having to root it
and inspect every app directory on the device for this single
file or reinstalling the OS altogether. We' reported this to the
Apple and Android security teams, but haven't heard back
from them regarding fix plans.

We thought we'd leave you with tips to take back to your
organizations on how to protect your apps from these
problems. Initially we thought to recommend that you should
incorporate this testing into your SDLC, ensure your policies
clearly prevent disabling validation, that your developers are
trained properly and know how to install certs on devices and
emulators and your code is reviewed for this issue, which is a
simple grep away in most cases. (CLICK)For example, you'll
want to look for X509TrustManager or HostNameVerifier
interfaces that always return a true-ish result on Android and
the slide shows some places to investigate on iOS as well.

Common thought is to use certificate pinning, which we
agree with, but it can be a pain for testing and development,
depending on how it is implemented.

Regardless of whether the app pins or not, we're big fans of
self-defending code, that eliminates the chance of human
error. Luckily, the IDEs for Android and iOS both use
“development” signing certificates which CANNOT be used to
sign production releases of APKs and IPAs, that are released
in the stores. So why not have the code check which
certificate it was signed with and create a fool-proof toggle
between dev and prod settings and use this to set whether or
not your application would validate CAs and CN/SAN on
certificates, if this is needed in your environment?

We honestly feel this is a simple and straightforward solution
that should work for everyone and unlikely to meet any
realistic objections.

Shields Up!Shields Up!

{ Review your code
{ Implement policy
{ Test pre-release
{ Train developers

We thought we'd leave you with tips to take back to your
organizations on how to protect your apps from these
problems. Initially we thought to recommend that you should
incorporate this testing into your SDLC, ensure your policies
clearly prevent disabling validation, that your developers are
trained properly and know how to install certs on devices and
emulators and your code is reviewed for this issue, which is a
simple grep away in most cases. (CLICK)

Shields Up!Shields Up!

{ Review your code
In Android, investigate these:
{ TrustManager
{ SSLSocket
{ SSLSocketFactory getInsecure
{ HostNameVerifier

In iOS, investigate these areas:
{ _AFNETWORKING_ALLOW

_INVALID_SSL_CERTIFICATES_
{ SetAllowsAnyHTTPSCertificate
{ kCFStreamSSLAllowsAnyRoot

For example, you'll want to look for TrustManagers that don't
actually do anything, HostNameVerifier interfaces that
essentially fail open or use of SSLSocket where there is no
call to getDefaultHostnameVerifier with the hostname
specified and/or unchecheckedd results from
HostnameVerifier.verify() on Android and the slide shows
some places to investigate on iOS as well. (CLICK)

Shields Up!Shields Up!
{ Certificate Pinning

{ Dev and prod signing
certificates are required to
be different in both iOS and
Android

{ Build a trust manager that
only allows certificate
validation to be disabled in
dev builds.

Conventional wisdom says you should use certificate pinning
and we don't disagree with that. Regardless of whether the
app pins or not, we're big fans of self-defending code, that
eliminates the chance of human error. Luckily, the IDEs for
Android and iOS both use “development” signing certificates
which CANNOT be used to sign production releases of APKs
and IPAs, that are released in the stores. So why not have
the code check which certificate it was signed with and
create a fool-proof toggle between dev and prod settings and
use this to set whether or not your application would validate
CAs and CN/SAN on certificates, if this is needed in your
environment?

We honestly feel this is a simple and straightforward solution
that should work for everyone and unlikely to meet any
realistic objections. (CLICK)

Live Long and ProsperLive Long and Prosper

Contact and testing instructions:

http://www.secbro.com

Tony Trummer:

http://www.linkedin.com/in/tonytrummer

@SecBro1

Tushar Dalvi:

http://www.linkedin.com/in/tdalvi

@TusharDalvi

R.I.P Reggie
Destin

Well, that's all we have. Thank you for your time and we hope
you enjoyed the presentation! We will be available afterwards
for any questions/comments.

Feel free to contact us directly anytime using the information
above.

Again, more detailed instructions available on secbro.com
and the slides should be there early next week.

 Live Long and Prosper!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

