
Malicious Hypervisor Threat – Phase Two:
How to Catch the Hypervisor

Research and development by Rubos, Inc. team
(We do independent research on security matters in

various domains)

Prepared for DeepSec 2016
Speaker: Mikhail Utin, PhD, CISSP

mikhailutin@hotmail.com

(Questions will be answered after the presentation.
Please, submit them to the speaker in writing)

Copyright © DeepSec GmbH & Rubos, Inc., 2016

Introduction

Malicious Hypervisor (MH) Phase 2 Topics

Phase 1 research (refresher):
- The threat is real and there are likely three instances in

use today (two US and one Russian)
- MH provides unlimited control over affected system
- No identification method/software tool
Phase 2 research and development:
- Technology Vulnerability – whose responsibility is to fix it

and Intel Corporation reaction on two vulnerabilities
- Existing ideas and methods for “rootkit hypervisor”

questionable and not practical
- Hypervisor Catcher © software (patent pending) research,

ideas and methods
- Testing, statistics and results

Phase 1 – Refresher

Russian Ghost Myth – Case #1 and Following Research
(2013 – 2014)

Our research Phase 1 was about three cases:

Case #1 - Russian research on Malicious BIOS Loaded
Hypervisor (approximately 2007 – 2010); posted at the
end of 2011

Case #2 - US Michigan University Virtual-Machine Based
Rootkit research which was done approximately in 2005 –
2006 years (published 2006)

Case #3 - US Michigan University IPMI/BMC (Intelligent
Platform Management Interface/Baseboard Management
Controller) vulnerability research of approximately 2012
– 2013 (published 2013)

Phase 1 Research Direction

Fig. 1. The process of 2013 - 2014 Malicious Hypervisor research

Case #1 Most Important Conclusions

1. MH has been embedded in BMC management system software. This
software is encrypted by Intel secret key and is decrypted when
loaded in BMC RAM. Required: the key, BMC software code,
software and hardware to work with BMC code and flash memory,
the access to logistics system (intercept, change, ship)

 Should a “backdoor” be embedded as well?
2. Motherboards causing problems (having MH) has been labeled

“Assembled China” and the clean one - “Assembled Canada”.
Neither country had motherboard assembly facility in 2007 - 2008.
Intel has and had only one facility in Vancouver, Canada – Flash
Memory Group (FMG), which is the only one in Intel dealing with
flash memory. Labels “Assembled … ” were to mislead.

3. Time correlation between Case #1 and Case #2 – MH appeared
approximately one year after MH Case #2 publication. It was not
able to support nested virtualization either.

4. Case #1 - MH development project by unknown entity- was definitely
complex and long term – tune-up, manufacturing, delivery

How Many MH Instances Are There?

Our search did not reveal any other public documents describing
anything close to MH in Michigan University Case #2.

We believe that there are three instances:

- The first one is the original Michigan University Case #2
hypervisor, which can be used on systems without hardware
assisted virtualization

- The second instance is described in Russian Case #1 - an
improved version of the first one: it has been found in
“Assembled in China” motherboards and working with
hardware assisted virtualization implementing nested
hypervisors

- The third instance is likely the result of two discussions of MH
threats and advantages with Russian FSB (former KGB)
specialists in computer security; this instance could have
appeared in the wild around 2011 – 2012 years.

Michigan University Case #3 – The Threat of Easy
Distribution of MH

MH installation requires administrator/root level of local system
access and local MH copy or downloading from remote source

Both tasks get simpler if IPMI/BMC vulnerability is used
(Illuminating the Security Issues Surrounding Lights-Out
Server Management by Anthony J. Bonkovski et al. 2013). This
Michigan University research (Case #3) identified close to one
hundred thousand servers ready to be compromised. MH can
be installed in main system if exists in BMC memory

IPMI and BMC neither by design nor implementation have any
real security controls – Linux bare-bone OS and server
firmware is rarely updated.

US CERT Alert : TA13-207A “Risks of Using the Intelligent
Platform Management Interface (IPMI) July 26, 2013” which
describes the risk as (quote) “Attackers can use IPMI to
essentially gain physical-level access to the server…”.

Combined Threat

Therefore we have a combination of two
threats – MH and IPMI/BMC which makes
possible massive delivery and installation of
extremely dangerous malicious software.
Such software could be developed within
one – two years by qualified group of three
people and distributed in millions of
computers.

Are we dealing with software vulnerabilities
yet to be fixed?

Phase 2 Research and
Development

Technology vulnerability

Not Software but Technology Vulnerabilities - 1
We Are Talking NOT about Software Bugs

Definitions from Wikipedia:

General - “Vulnerability refers to the inability (of a system or a
unit) to withstand the effects of a hostile environment.”
Simply– it is inability to resist a threat.

In computing - “In computer security, a vulnerability is a
weakness which allows an attacker to reduce a system's
information assurance. Vulnerability is the intersection of
three elements: a system susceptibility or flaw, attacker
access to the flaw, and attacker capability to exploit the flaw.”

MH exploits modern operating systems inability to resist
involuntary virtualization after OS is installed and functioning.
Operating systems do not have protecting mechanisms
against malicious virtualization.

Not Software but Technology Vulnerabilities - 2

IPMI & BMC technology vulnerabilities are very similar:

- There is IPMI technology vulnerability of seamless and
unprotected system level access to computer resources which
is usually utilized by computer management system

- BMC technology vulnerability is unprotected implementation of
system management software embedded in BMC.

What about fixing technology vulnerabilities? In particular, when
such technologies has been in use for years and are likely to
be used in near future.

Vendors should take care of such vulnerabilities, and in
particular when technology has underlying standard like IPMI.

Microsoft and Intel were two of three of sponsors of Michigan
University Case #2 MH research. It means that discovered
vulnerabilities of Windows OS and IPMI & BMC and underlying
computing technology were known back in 2006.

Vendors , Vulnerabilities and (Ir)Responsibility
However, we’ve never heard any word from Microsoft addressing

virtualization vulnerability. Neither Intel Corporation reported
of working on IPMI & BMC vulnerabilities, which create the
gateway to the exploitation of combined vulnerability. Intel
Corporation:

- Has 90% of CPU market
- Makes chip sets for motherboards
- Makes motherboards
- * Developed and supports CPU Hardware Assisted

Virtualization

- * Developed and supportsComputer System Management
Software (CSMS)
- Utilizes * Linux CSMS OS
- Provides production support, including bugs fixing, etc.

* - Are related to our case and may be vulnerable

We requested Intel comments on vulnerabilities

Intel Production Security Team Response
• We’d like to thank you for raising your concerns to Intel regarding Intelligent

Platform Management Interface (IPMI) and Virtualization Technology (VT). We
take the security of our products and infrastructure seriously and work
continuously in the security of both. We have carefully reviewed all the
information you have provided as well as the resources you have directed us to.

• Intel published the first IPMI specification in 1998. Since that time it has worked
with many other companies to extend the specification. As you know, security
depends on how the specification is implemented and deployed by the system
owner. As you’ve pointed out there are risks if vulnerabilities exist in the
implementation or if the system is not deployed properly. At this point we have
not received any new information from you that Intel implementations of IPMI
have a vulnerability.

• Many parties in the industry, including Intel, provide detailed guidance regarding
the proper use of this technology in order to help ensure systems follow good
security practices. At this point we have not received any new information that
VT has a vulnerability. If you are aware of one please do let us know. Additionally,
if you’d like us to facilitate a discussion between you and a systems provider
whom you’ve identified a vulnerability we’d be happy to make the connection.

• Regards,

Intel PSIRT

Technology Vulnerability Is NOT a Vulnerability?
There is nothing new in such position – we have seen on

FullDisclosure list - “it is not vulnerability – it is our system
feature”. If you found bugs in Intel CSMS or embedded OS, they
can be discussed. If you are talking about technology vulnerability
– no. Technology vulnerability is not recognized as a vulnerability.

It means that we are on our own to address the threat of three
vulnerabilities in question.

Why IPMI/BMC is so vulnerable? First, as we mentioned above,
simple Linux OS does not provide usual Linux security (firewall,
SELinux, auto-update). Second, there is human factor. Each new
fix in OS and CSMS must be installed, and that is traditionally
ignored by server administrators.

What does Intel do to secure its CSMS and embedded Linux OS? We
did brief search and found that one older motherboard had rare
updates while the new one was updated frequently. It is more
likely that old motherboards (thus servers) are more vulnerable.

System administration ignorance and 0-days – main contributors.

Phase 2 Research and
Development

Existing Ideas and Methods

First Step Towards Protection Is Detection - Status

Root-Kit Hypervisor (RH) traditional identification methods -
software runs within installed OS while trying to catch
hypervisor operations below it in virtualization level by, for
instance, signatures of operations.

Main problem – RH/MH can intercept identification software
activity and block it or alter results. Proposed method of
Instruction Execution Time IET) in “Two Challenges of Stealthy
Hypervisor Detection: Time Cheating and Data Fluctuations,
Igor Korkin, CDFSL 2015” is the most advanced but seems to
have the same weakness – it is executed in Secure Hypervisor
environment (SH), which is installed above MH, and thus MH
could alter testing results or block SH

IET method requires significant time for data collection and
statistic filtering – the paper describes 10 days of collection.

Phase 2 Research and
Development

Hypervisor Catcher –
Research, Ideas and Methods

Ideas and Methods – Practicality and Simplicity - 1
We have done the research of how to identify a hypervisor installed

in a computer system and following development and testing of
the software during 2015 – 2016.

Methods and software are US patent pending

The following, however, is not complete description of what we
have done and what exactly was implemented. We would like to
set up a discussion of ways and means of MH identification

Our main goal is encouraging the audience to continue the research
and find possibly better methods following the simplicity and
practicality requirement. Our basic ideas:

- MH should consume CPU resources around 1% utilization,
therefore increasing execution time; we can then use Time
Difference Identification (TDI)

- MH is emulation software and may react differently on some
operations increasing deviation - Deviation Difference
Identification (DDI) method

Ideas and Methods – Practicality and Simplicity - 2

How to identify 1% difference in tests? We decided to use 100%
CPU utilization. If our identification software execution time
without hypervisor (clean system) is Tc then with a hypervisor
– Th - we will get hopefully 1.05Tc < Th < 1.01Tc

What to run as basic identification software? We opted for
software performing various intensive calculations in
computer memory and utilizing very basic CPU commands
only. The idea behind that is to masquerade identification
activity as well. MH thus will be unable to identify whether it is
running general purpose software or MH identification
software.

How to Identify?

TDI method - we need to find a difference in execution time between
the same system with and without a hypervisor using two phases
testing:

- Clean system – the same model right after production or
disabling virtualization support via system BIOS (if supported)

- Statistical “clean system” variant – assuming that “clean”
systems are more common and MH infected are unusual, we can
collect a database of multiple systems testing and identify clean

- Disabling virtualization support in BIOS, however, may be
intercepted by MH and considered as the identification attempt.
MH can then block changes and alter output

- DDI testing in general also requires two phases as we are going
to use execution time difference. However, we were able to
discover specific effect of virtualization which made possible to
test only once

- Statistical filtering in both methods as we expect high deviation

Phase 2 Research and
Development

Testing, Statistics and
Results

Development and Testing

We used the most advanced and reputable hypervisor for testing
– VMware ESXi 5.5.0 with VMKernel Build 2068190

The development and testing environment:

- Two high end Lenovo notebook computers supporting Intel
hardware virtualization

- Desktop computer running VMware vSphere Client 5.5 to run
our software

- Bootable OS CD with HyperCatcher auto-starting executable

Initial tests utilizing CentOS Live CD v.6.x had high deviation level
of execution time caused by various OS services (GUI, update,
security, etc.).

Further testing used CentOS 7.0 Minimal Installation and finally
Ubuntu 14.04

Statistical Filtering

Three steps testing procedure for both TDI and DDI - “run”:
- First step is to execute basic identification software a few

thousand times to decrease the deviation and then calculate
average value for all CPU cores; this is a “cycle”

- Then do several cycles in a trial, find the average execution
time value for this trial and the deviation

- Final step in statistical filtration by executing several trials in
one run. The average time value is to be used to calculate the
time increase of TDI testing. The deviation proves that the
execution time random value is inside three standard deviation
intervals

- If the deviation is still high, there is the possibility for fourth
step of statistical filtering by executing a few runs in this test.
However, as of today we use three steps filtration.

Deviation Difference Identification Testing

Execution of some operations changes hypervisor behavior:
- Increase of time difference (TDI) – approximately twice
- Increase of time deviation – from 2 to 50 times randomly

Thus, our idea of forcing the hypervisor to change its behavior
was correct and such testing is named Deviation Difference
Identification (DDI).

Table 1 shows results without hypervisor; we did only ten runs to
accumulate statistics without hypervisor as deviation is really
low; thus we do not need to collect more statistics. Tables 2
and 3 represent the total of 40 runs with hypervisor. We did 40
runs to show the behavior of time execution deviation if
hypervisor is present.

Testing results without hypervisor

Testing with hypervisor - 1

Testing with hypervisor - 2

Hypervisor Identification by Time Difference (TDI)

We highlighted in bold the runs when the deviation is >= 0.01. The
deviation values fall in two big groups – less than 0.01 – 18 and
more than 0.01 – 22. Statistically it is close to 50% each.

Therefore in “without hypervisor” test (Table 1) we have average
time AvTc=5,5005 and average deviation AvDc=0.0008 (0.001)

Average execution time by four tests with hypervisor (Tables 2
and 3) – AvTh=5.5984

Time difference AvTh – AvTc=5.5984-5.5005=0.0979

Average deviation by four tests with hypervisor – AvDh=0.0202

The increase of execution time is 0.0979 and which is 1.8%

The maximum sum of average deviations is AvDc + AvDh = 0.0212

It is possible to identify the hypervisor by time difference method
because the time difference 0.0979 is more than four times of
maximum sum of average standard deviations: 0.0979 > 4x
0.0212

Hypervisor Identification by Deviation Increase (DDI)

Each of four tests show deviation values more than 0.01, and that is
ten times higher than the deviation without hypervisor AvDc=0.001

- Test 1: there are 4 high deviation values (0.0312, 0.0190, 0.0337,
0.0423) and first high value is in the second run

- Test 2: there are 7 high deviation values (0.0328, 0.0544, 0.0255.
0.0224, 0.0277, 0.0471, 0.0151) and first high value is in first run

- Test 3: there are 5 high deviation values (0.0283, 0.0649. 0.0189,
0.0153, 0.0399) and the first high value is in the first run

- Test 4: there are 5 high deviation values (0.0283, 0.0649, 0.0189,
0.0153, 0.0399) and first high value is in the second run.

More likely that high deviation value will happen within 1 – 5 runs. The
probability that next run will have high deviation value is 50%.

The probability that MH will be found in at least one run in 10-runs
test is about 99.9%

Is There a Hypervisor – DDI testing Reporting

While we are not dismissing the value of TDI testing, we currently
consider DDI method to be superior, primarily because it does not
require having “clean” system results to compare with. The test
can be stopped when the first high time deviation is identified.

We can consider 0.01 as a borderline value and any higher value
means that a hypervisor is present:

- Values lower than 0.002 should be considered as no hypervisor

- Between 0.001 and 0.005 - there is some likelihood that hypervisor
exists

- Between 0.005 and 0.01 that a hypervisor is possible

Fig. 1 below shows sample deviation distribution for DDI testing of 8
runs.

The following Fig. 2 and Fig. 3 screenshots are results of two tests
running HyperCatcher v.1.0. Each test consisted of five runs.
Yellow crosses show runs’ execution time deviation values and
indicate whether the hypervisor is present

Sample DDI Testing Distribution

Sample DDI Testing Screenshot #1

Sample DDI Testing Screenshot #2

Phase 2 Research and
Development
Conclusion

Conclusion
1. The software which will very likely identify any hypervisor is

developed. We have now the first layer of protection –
detection of MH. It is still not a protection but we are much
better now than before.

2. There are two methods of MH detection and each works
efficiently and reliably. The HyperCatcher v.1.0 is first
production version utilizing DDI method. The software does
not require any specific skills to use – it identifies MH
automatically.

3. We do not expect that major computing technology vendors
will agree with “computing technology vulnerability” cases
which we discussed. They may act securing some features but
not implementing Security Development Life Cycle for each
and all technologies affecting billions of users.

4. We hope to see more security research in detecting and
protecting against MH threat. We think that security
community may take a lead fixing the vulnerabilities we
discussed.

References

1. Chinese Add-ons: True Stories of virtualization, information security and
computer spying; post on http://xakep.ru/articles/58104/ 12/26/2011.
Translated from Russian, Copyright © DeepSec, GmbH and Rubos, Inc.,
2014.

2. SubVirt: Implementing malware with virtual machines. Samuel T. King,
Peter M. Chen (University of Michigan); Yi-Min Wang, Chad Verbowski,
Helen J. Wang, Jacob D. Lorch (Microsoft Research); IEEE Symposium on
Security and Privacy, Berkley/Oakland, CA, USA, 21-24 May, 2006.

3. Illuminating the Security Issues Surrounding Lights-Out Server
Management by Anthony J. Bonkoski, Russ Bielawski, J. Alex Halderman;
Michigan University. 7Th USENIX Workshop on Offensive Technologies,
August 13, 2013, Washington, DC.
https://www.usenix.org/conference/woot13/workshop-
program/presentation/bonkoski

4. Alert TA13-207A The Risks of Using the Intelligent Platform Management
Interface (IPMIO), US CERT, July 26, 2013 https://www.us-
cert.gov/ncas/alerts/TA13-207A

Thank you very much!
(I’ll answer all face-to-face

questions)
Rubos, Inc. Team

mikhailutin@hotmail.com
mutin@rubos.com

