
TLS 1.3

Lessons Learned from Implementing
and Deploying the Latest Protocol

Nick Sullivan
@grittygrease

November 11, 2016

SP 0:00:00

PLAY

- MENU -

■ PAST

PRESENT

FUTURE

Transport Layer Security

• Point-to-point secure
communication protocol

• Client-server model, with
server authentication, optional
client authentication

OSI Model

Application

Presentation

Session

Transport

Network

Data link

Physical

HTTP

TLS

TCP
IP

Ethernet

Physical

Layer 6

Application

Presentation

Session

Transport

Network

Data link

Physical

HTTP

TLS

TCP
IP

Ethernet

Physical
Layer 6

HTTP

SMTP >

gRPC

HTTP

SMTP

gRPC

TLS

>

50% of page loads are
HTTPS

The Evolution of T L S

• SSLv1 (1993?) 💩

• SSLv2 (1994) 🌊

• SSLv3 (1995) 🐩

• TLS 1.0 (1999) 👹

• TLS 1.1 (2006)
• Lucky 13

• RC4 Biases

• SWEET32

• TLS 1.2 (2008)
• Safe with the right configuration

E s s e n t i a l

C o m p o n e n t s

• Key Exchange

• Authentication

• Encipherment

T h e T L S 1.2

H A N D S H A K E

hello

ServerClient

Newton Image CC 2.0 SA, flickr.com/photos/moparx/5321857668

hello + key share + cert

key share + HMAC

HMAC

request

http://flickr.com/photos/moparx/5321857668

ECDHE-RSA-AES256-GCM-SHA384 

Key Exchange

Authentication

Cipher

K-A-C

K-A-C
KAC1

KAC2 
 
KAC3

>>>

KAC3

KAC2

KAC4

 
KAC3<<<

Key Exchange

Static RSA - oldest form, take the
pre-master secret and encrypt with
the public key of the cert

DH - Diffie-Hellman with arbitrary
group for pre-master secret

ECDHE - Diffie-Hellman with
elliptic curves for pre-master secret

Key Exchange

Static RSA - No Forward Secrecy.
The NSA will retroactively decrypt
your conversations.

DH - People choose bad parameters
and there’s no way to know.

ECDHE - You’re cool, but drop the
old curves.

Who you are is who you are.

Authentication

• Certificate with public key (RSA or ECDSA)

• With RSA PKCS#1 1.5 is known to be fragile but no known
direct attacks. PSS would be better.

• ECDSA: just don’t reuse random nonce (Android PRNG,
etc.)

• Use a strong hash function, MD5 collisions exist resulting
in SLOTH

Authentication in 1.2

• What do you sign?

• Nonces and public key: No authentication of the cipher
or curve choices, leading to FREAK, LogJam,
CurveSwap

• Extended Master Secret: derive the key from the entire
transcript to sure you can’t just choose params so that
two connections have the same keys (Triple Handshake)

Authentication in 1.2

Encryption

• CBC-mode ciphers with sign-then-encrypt: BEAST,
padding problems galore (Lucky 13), birthday
collisions (SWEET32)

• Only stream cipher is RC4: predictable

• TLS 1.2 introduced AEAD: AES-GCM, ChaCha20/
Poly1305

Session Resumption

Encrypt the session keys with a
session ticket key (STK)

This makes the STK a long-term
secret that kills forward secrecy

What is the
safe

configuration?

• AEAD cipher (RC4 and CBC vulns)

• EMS (FREAK/LogJam, Triple Handshake, etc.)

• ECDHE (new point per connection)

• Restricted resumption

- MENU -

 PAST
■ PRESENT

FUTURE

Fixing T L S

• TLS 1.3 Draft 00 on April 17,
2014

• Currently: Draft 18

• It’s 118 pages vs. 104 for TLS 1.2

• Remove broken cryptography

• Clear, simple to implement specification

• Formal verification

• Backwards compatibility

• Make the handshake faster (more on that)

G O A L S

K,A,C
K1 A1 C1

K2 A2 C2 
 
K3 C3

>>>

K3,K2

A2

C2,C3

<<< K3,A2,C2

 
ECDHE (no weak curves)

x25519, x448 for djb hipsters

ffDHE (safe groups)

Key Exchange

RSA-PSS

ECDSA

Entire transcript is signed

Authentication

AEADs only

AES-GCM, ChaCha20-Poly1305

No weak KDFs (SLOTH)

Cipher

T h e T L S 1.3

H A N D S H A K E

ServerClient

Newton Image CC 2.0 SA, flickr.com/photos/moparx/5321857668

hello + key share

hello + key share + cert + HMAC

request

http://flickr.com/photos/moparx/5321857668

T h e T L S 1.3

H A N D S H A K E

ServerClient

Newton Image CC 2.0 SA, flickr.com/photos/moparx/5321857668

hello + key share

hello retry request

request

hello + cookie + key share

hello + key share + cert + HMAC

http://flickr.com/photos/moparx/5321857668

Session Resumption

Encrypt the resumption master
secret with a session ticket key

(STK)

New sessions use new key
exchange

Building and
Deploying

TLS 1.3

Cloudflare´s stack

OpenSSL

|

nginx

|

origin

• Let’s build a TLS 1.3 stack in Go: tls-tris

• Hand off the TCP socket from nginx to a Go-based
reverse proxy using tris.

• Inspect first two bytes, if 3.4, send to Go. Go can
accept or reject based on customer settings.

Go Go Go

Cloudflare´s stack

OpenSSL

| |

tris nginx

| |

origin

The big
launch

Encryption Week
Enabled for >3 million sites

September 20th

• Draft 14 support

• Firefox Nightly and Chrome Canary, but disabled by
default

• We only saw around 1 connection per second
globally

Launch

• Version number 3.4 breaks >2% of servers

• Chrome could either

• Break these sites

• Implement insecure fallback

• Lobby the IETF to change the negotiation

Version Intolerance

• Version number in Draft 16 is now 3.4

• TLS 1.3 negotiated via an extension

• Our implementation was broken for a week

• SSL Labs is still broken

Version Intolerance

Amazing!

- MENU -

 PAST

PRESENT
■ FUTURE

The future of
tls-tris

Attempting to upstream to Go
standard library

NCC Group audit

• Chrome Canary enabled field test

• Firefox Nightly enabled by default

• Firefox 52 (March 2017) on by default

• OpenSSL 1.1.1 in 6 months

• Draft 18 submitted for last call

• Final submission IESG: January 2017

T h e T L S 1.3

0-RTT H A N D S H A K E

ServerClient

Newton Image CC 2.0 SA, flickr.com/photos/moparx/5321857668

hello + key share + request

hello + key share + cert + HMAC +
response

http://flickr.com/photos/moparx/5321857668

0-RTT Is Replayable

• Requests should be
idempotent

• Idempotent requests can
leak data

• Small time window

0-RTT Attack

Server

Client

hello + key share + POST request
DB

hello + key share + POST request

Attacker

0-RTT Attack

Server

Client

hello + key share + GET request

hello + key share + GET request

Attacker
hello + key share + cert + HMAC +

response

–Tim Cook on encryption

“It’s a superb
thing.”

SP 0:40:00

STOP

TLS 1.3

Lessons Learned from Implementing
and Deploying the Latest Protocol

Nick Sullivan
@grittygrease

November 11, 2016

