
A Survey On Automated
Dynamic Malware Analysis

Evasion and Counter-Evasion:
PC, Mobile, and Web

Alexei Bulazel & Bülent Yener
River Loop Security

 Rensselaer Polytechnic Institute (RPI)

Introduction

● Automated dynamic malware analysis is essential to keep up
with modern malware (and potentially malicious software)

● Problem: malware can detect and evade analysis

● Solution: detect or mitigate anti-analysis

Scope

● Survey of ~200 works on evasive malware
techniques, detection, mitigation, and case
studies

● Mostly academic works, with a few industry
talks and publications

● In this presentation - focus on PC-based
malware experimentation, more discussion
than survey

Dynamic Automated Analysis Systems

a.k.a:
“malware sandboxes”
“detonation chambers”

Takeaways

● Evasive malware and defenders continually evolve to counter
one another

● The fight between malware and analysis systems is likely to
continue long into the future

● There are immense challenges to experimental evaluation and
the ability to establish ground truth

Presentation Outline

1. Introduction
2. Offense - Detecting Analysis Systems
3. Defense - Detecting Malware Evasion
4. Defense - Mitigating Malware Evasion
5. Discussion
6. Conclusion

Offense - Detecting Analysis Systems

● Fingerprint Classes
○ Environmental Artifacts
○ Timing
○ CPU Virtualization
○ Process Introspection
○ Reverse Turing Tests
○ Network Artifacts
○ Mobile Sensors
○ Browser Specific

bool beingAnalyzed = DetectAnalysis();

if(beingAnalyzed)
{

BehaveBenignly();
}
else
{

InfectSystem();
}

Environmental Artifacts & Timing

● Unique distinguishing
characteristics of the analysis
environment itself
○ Usernames
○ System settings
○ Date
○ Installed software
○ Files on disk
○ Running processes
○ Number of CPUs
○ Amount of RAM

● Timing discrepancies in analysis
systems

● Sources:
○ Emulation / virtualization overhead
○ Analysis instrumentation overhead
○ Overhead of physical hardware

instrumentation (potentially)

● Challenging to mitigate
○ Garfinkle et al: “extreme engineering

hardship and huge runtime
overhead”

CPU Virtualization & Process Introspection

● CPU “Red Pills”
● Discrepancies in CPU behavior

introduced by virtualization
○ Erroneously accepted/rejected

instructions
○ Incorrect exception behavior
○ Flag edge cases
○ MSRs
○ CPUID/SIDT/SGDT/etc discrepancy

● Particularly applicable for
emulators

● Discrepancies in internal state
○ Memory or register contents
○ Function hooks
○ Injected libraries
○ Page permission eccentricities

● Commonly used in anti-DBI

Reverse Turing Tests & Network Artifacts

● Computer decides if it is
interacting with computer or
human

● Passive: mouse movement, typing
cadence, process churn, scrolling

● Active: user must click a dialogue
box

● Wear-and-Tear: evidence of human
use, copy-paste clipboard,
“recently opened” file lists, web
history, phone camera photos

● Fixed IP address
● Network isolation
● Incorrectly emulated network

devices or protocols
● Unusually fast internet service

Detection - Discussion

● Variety of sources: underlying technologies facilitating analysis, system
configuration, analysis instrumentation

● Easy to use = easy to mitigate
● Difficult to use = difficult to mitigate

● Reverse Turing Tests seem to be growing in relevance, and are extremely
difficult to mitigate against

Presentation Outline

1. Introduction
2. Offense - Detecting Analysis Systems
3. Defense - Detecting Malware Evasion
4. Defense - Mitigating Malware Evasion
5. Discussion
6. Conclusion

Detecting Malware Evasion

● Detecting that malware exhibits evasive behavior under dynamic analysis,
but not mitigating evasion
○ Comparatively fewer works relative to mitigation work

● Early work - detecting known anti-analysis-techniques
○ 2008: Lau et al.’s DSD-Tracer

● Most works use multi-system execution
○ Run malware in multiple systems and compare behavior offline - discrepancies may indicate

evasion in one or more of these systems

Multi-System Execution

● Instruction-level (2009: Kang et al.)
○ Too low level, prone to detect spurious differences

● System call-level (2010: Balzarotti et al. / 2015: Kirat & Vigna - MalGene)
○ Higher level than just instructions
○ MalGene uses algorithms taken from bioinformatics work in protein alignment

● Persistent changes to system state (2011: Lindorfer et al. - Disarm)
○ Jaccard distance-based comparisons

● Behavioral profiling (2014: Kirat et al. - BareCloud)
○ What malware did vs. how it did it, “hierarchical similarity” algorithms from computer vision

and text similarity research

Evasion Detection - Discussion

● Multi-system execution is a common solution for evasion detection

● Offline algorithms do not detect evasion in real time

● Evolution over time to increasingly complex algorithmic approaches,
working over increasingly abstracted execution traces

● Detection does not solve the main challenge of evasion, so there is less
work in the field compared to mitigation research

Presentation Outline

1. Introduction
2. Offense - Detecting Analysis Systems
3. Defense - Detecting Malware Evasion
4. Defense - Mitigating Malware Evasion
5. Discussion
6. Conclusion

Defense - Mitigating Evasion

● Mitigating evasive behavior in malware so that analysis can proceed
unhindered

● Early approaches
○ Binary Modification
○ Hiding Environment Artifacts
○ State Modification
○ Multi-Platform Record and Replay

● Path Exploration
● Hypervisor-based Analysis
● Bare Metal Analysis & SMM-based Analysis
● Discussion

Early Approaches

● Binary Modification
○ 2006: Vasudevan et al. - Cobra
○ Emulate code in blocks like QEMU

■ Remove or rewrite malware
instructions that could be used for
detection

● State Modification
○ 2009: Kang et al.

■ Builds upon detection work
■ “dynamic state modification” (DSM),

modifications to state force
malware execution down alternative
paths

● Hiding Environmental Artifacts
○ 2007: Willems et al. - CWSandbox

■ In system kernel driver hides
environmental artifacts

○ Oberheide later demonstrated several
detection techniques against CWSandbox

● Multi-Platform Record and Replay
○ 2012: Yan et al. - V2E

■ Kang et al.’s DSMs are not scalable
for multiple anti-analysis checks

■ Don’t mitigate individual
occurrences of evasion, make
evasion irrelevant because systems
are inherently transparent

Path Exploration

● 2007: Moser et al.
○ Looks broadly at code coverage and analyzing trigger-based malware
○ Track when input is used to make control flow decisions, change it to force execution down

different code paths

● 2008: Brumley et al. - MineSweeper
○ Trigger-based malware focused
○ Represents inputs to potential triggers symbolically, while other code is executed concretely

Hypervisor-based Analysis

● 2008: Dinaburg et al. - Ether
○ Catch system calls and context switches from Xen
○ Despite extensive efforts to make analysis transparent, Pék et al. created nEther and were

able to detect Ether

● 2009: Nguyen et al. - MAVMM
○ AMD SVM with custom hypervisor
○ Thompson et al. subsequently demonstrated timing attacks that can be used to detect

MAVMM and other hypervisor based systems

● 2014: Lengyel et al. - DRAKVUF
○ Xen-based, instruments code with injected breakpoints

Bare Metal Analysis

● 2011, 2014: Kirat et al. - BareBox &
BareCloud
○ BareBox - in-system kernel driver
○ BareCloud - post-run disk forensics

● SMM-based analysis: all the transparency
benefits of bare metal, while restoring
introspection
○ Full access to system memory, protection

from modification, high speed, protection
from introspection

● 2013 & 2015: Zhang et al. - Spectre, MalT
○ Spectre: SMM-based analysis, 100x faster

than VMM based introspection
○ MalT - SMM-based debugging

● 2012: Willems et al.
○ Hardware-based branch tracing features
○ Analyzed evasive PDFs

● 2016: Spensky et al. - LO-PHI
○ Instrument physical hardware
○ Capture RAM and disk activity at the

hardware level
○ Scriptable user keyboard/mouse

interaction with USB-connected Arduinos

● 2016: Leach et al. - Hops
○ SMM memory snapshotting and PCI-based

instrumentation

Mitigation - Discussion

● Two broad categories: active and passive mitigation
○ Active - detect-then-mitigate
○ Passive - build inherent transparency

● Passive approaches have been more prevalent
○ Hypervisors, bare metal, etc

● Bare metal is the cutting edge in academic research, but it may not be
scalable to industry applications
○ Promising, but not a panacea against any class of attacks other than CPU-based

Presentation Outline

1. Introduction
2. Offense - Detecting Analysis Systems
3. Defense - Detecting Malware Evasion
4. Defense - Mitigating Malware Evasion
5. Discussion
6. Conclusion

Discussion

● Offensive Research
○ Reverse Turing Tests
○ Detecting Bare Metal Analysis

● Defensive Research
○ Improving Bare Metal Analysis
○ Heuristic Evasion Detection
○ Passing Reverse Turing Tests

● Game Theory Formalizations

● Research Evaluation
○ Establishing Ground Truth
○ Challenges in research

evaluation
○ Suggestions for Improvement

Offensive Research

● Reverse Turing Tests
○ Difficult to mitigate against
○ Increasingly relevant as analysis systems become transparent
○ Look to anti-cheating research for online gaming

● Detecting bare metal analysis
○ Still vulnerable to everything except CPU-based attacks
○ Look to detecting analysis instrumentation

Defense - Improving Bare Metal Analysis

● Improving bare metal analysis - efficient, introspection, and stalling
mitigation
○ Efficiency

■ 2016: Vadrevu and Perdisci - MAXS - improve efficiency by 50% on average
with less than 0.3% information loss in analysis

○ Introspection
■ SMM needs further research

○ Stalling mitigation
■ Difficult to mitigate against with current bare metal systems
■ Performance tracing technologies may provide a direction forward

Defense - Heuristic Evasion Detection

● Can the behaviors involved in evasion before conditional branching occurs
be detected heuristically?

● Inspirations
○ Code fragility may indicate maliciousness
○ Heuristic detection in enterprise and personal AV/endpoint products
○ Stalling detection techniques
○ Anti-anti-DBI heuristics

Defense - Passing Reverse Turing Tests

● Believably simulating human presence as reverse Turing Tests become
more prevalent

● Inspirations:
○ UNVEIL’s fake file system creation
○ LARIAT information assurance testbed
○ Biometric spoofing research

Meta - Game Theory Formalizations

● Cat-and-mouse game of analysis system vs. malware
○ Strategy dependent on the “worthiness” of the adversary
○ Save advanced techniques for the most advanced opponent

● Stackelberg games
○ Allocation of analysis resources by analysis system with randomized strategy

while malware deploys a purely deterministic evasion strategy

Meta - Establishing Ground Truth

● Unknown-unknowns: researchers don’t know what they don’t know
● Human malware analysis is not scalable
● “Bootstrapping” corpora - use previously generated analysis reports as

ground truth
○ Problematic: differences in execution environment and time may lead to

spurious differences
● Collection in the wild

○ Challenging for evasive malware
○ Collection sources may reveal biases

Meta - Challenges in Research Evaluation

● Evaluated works range from evaluating one lab-created malware sample to
analyzing millions captured in the wild

● Impossible to empirically compare research, or reproduce results

● 2012: Rossow et al. - evaluated the “methodological rigor and prudence” of
36 papers involving malware experimentation from 2006-2011
○ We re-emphasize all of the author’s points and recommend researchers read

their paper closely

Meta - Suggestions for Improvement

● Establish ground truth
○ Verify analysis results for at least a portion of the malware with a human analyst

● Make multi-execution system similar
○ Minimize differences in environment causing spurious differences in execution
○ Discuss any unavoidable differences

● Be explicit about malware origins
○ Malware corpora may have inherent skews

■ VirusTotal - wild samples caught by defenders, or offensive actors doing testing
■ APTs - hard to catch

● Surveyed in paper: mobile and
web analysis, case studies

● Continual evolution of offense and
defense, will to continue into the future

● Cutting edge defenses may not be
scalable

● Immense challenges to experimental
evaluation and ground truth

Conclusion & Thank You
● Friends who helped us edit: Rolf

Rolles, James Kukucka, Aaron
Sedlacek

● RPI support: Jeremy Blackthorne and
Dr. Greg Hughes

● Program committee & our
anonymous reviewers - particularly #4

● Dr. Sergey Bratus
● DeepSec / ROOTS

alexei@riverloopsecurity.com
yener@cs.rpi.edu

