A Survey On Automated
Dynamic Malware Analysis

Evasion and Counter-Evasion:
PC, Mobile, and Web

Alexel Bulazel & Biilent Yener

River Loop Security
Rensselaer Polytechnic Institute (RPI)

)ANASEC

Introduction

e Automated dynamic malware analysis is essential to keep up
with modern malware (and potentially malicious software)

° : malware can detect and evade analysis

° . detect or mitigate anti-analysis

Scope

Survey of ~200 works on evasive malware
techniques, detection, mitigation, and case
studies

Mostly academic works, with a few industry
talks and publications

In this presentation - focus on PC-based
malware experimentation, more discussion
than survey

Dynamic Automated Analysis Systems

Analysis User
Process Process

a.k.a: e Virtualized 05 =-
malware sandboxes rver
“detonation chambers”

User

" P
Virtualized ﬂ &@ HOEERS
E M U Hardware S 17 §
CUCKO_Q% N Malware I))
& Sandbox 'l” @:b
. A Operating System ”n *
5 or Hypervisor '

Hardware

Takeaways

e Evasive malware and defenders continually evolve to counter
one another

e The fight between malware and analysis systems is likely to
continue long into the future

e There are immense challenges to experimental evaluation and
the ability to establish ground truth

Presentation Outline

1. Introduction

Defense - Detecting Malware Evasion
Defense - Mitigating Malware Evasion
Discussion
Conclusion

SRS R S

Offense - Detecting Analysis Systems

Mobile Sensors
Browser Specific }

e Fingerprint Classes bool beingAnalyzed = DetectAnalysis();
o Environmental Artifacts
o Timing 1f (beingAnalyzed)
o CPU Virtualization {
o Process Introspection }
o Reverse Turing Tests else
o Network Artifacts {
@)
O

Environmental Artifacts & Timing

Unique distinguishing
characteristics of the analysis

environment itself

(@)

O O O O O O o

Usernames
System settings
Date

Installed software
Files on disk
Running processes
Number of CPUs
Amount of RAM

Timing discrepancies in analysis
systems

Sources:
o Emulation / virtualization overhead
o Analysis instrumentation overhead
o Overhead of physical hardware
instrumentation (potentially)

Challenging to mitigate
o Garfinkle et al: “extreme engineering

hardship and huge runtime
overhead”

CPU Virtualization & Process Introspection

e CPU “Red Pills”
e Discrepancies in CPU behavior

introduced by virtualization
o Erroneously accepted/rejected
instructions
Incorrect exception behavior
Flag edge cases
MSRs
o CPUID/SIDT/SGDT/etc discrepancy

e Particularly applicable for
emulators

O O O

Discrepancies in internal state

(@)

(@)

(@)

(@)

Memory or register contents
Function hooks

Injected libraries

Page permission eccentricities

Commonly used in anti-DBI

Reverse Turing Tests & Network Artifacts

e Computer decides if itis e Fixed IP address

interacting with computer or e Network isolation

human e Incorrectly emulated network
e Passive: mouse movement, typing devices or protocols

cadence, process churn, scrolling e Unusually fast internet service
e Active: user must click a dialogue

box

e Wear-and-Tear: evidence of human
use, copy-paste clipboard,
“recently opened” file lists, web
history, phone camera photos

Detection - Discussion

e Variety of sources: underlying technologies facilitating analysis, system
configuration, analysis instrumentation

e Easyto use = easy to mitigate
e Difficult to use = difficult to mitigate

e Reverse Turing Tests seem to be growing in relevance, and are extremely
difficult to mitigate against

Presentation Outline

Introduction

Offense - Detecting Analysis Systems
Defense - Detecting Malware Evasion
Defense - Mitigating Malware Evasion
Discussion

Conclusion

o gk W =

Detecting Malware Evasion

e Detecting that malware exhibits evasive behavior under dynamic analysis,

but not mitigating evasion
o Comparatively fewer works relative to mitigation work

e Early work - detecting known anti-analysis-techniques
o 2008: Lau et al.'s DSD-Tracer

e Most works use multi-system execution
o Run malware in multiple systems and compare behavior offline - discrepancies may indicate
evasion in one or more of these systems

Multi-System Execution

Instruction-level (2009: Kang et al.)

o Too low level, prone to detect spurious differences

e System call-level (2010: Balzarotti et al. / 2015: Kirat & Vigna - MalGene)

o Higher level than just instructions
o MalGene uses algorithms taken from bioinformatics work in protein alignment

e Persistent changes to system state (2011: Lindorfer et al. - Disarm)
o Jaccard distance-based comparisons

e Behavioral profiling (2014: Kirat et al. - BareCloud)
o What malware did vs. how it did it, “hierarchical similarity” algorithms from computer vision
and text similarity research

Evasion Detection - Discussion

e Multi-system execution is a common solution for evasion detection
e Offline algorithms do not detect evasion in real time

e Evolution over time to increasingly complex algorithmic approaches,
working over increasingly abstracted execution traces

e Detection does not solve the main challenge of evasion, so there is less
work in the field compared to mitigation research

Presentation Outline

Introduction

Offense - Detecting Analysis Systems
Defense - Detecting Malware Evasion
Defense - Mitigating Malware Evasion
Discussion

Conclusion

SN

Defense - Mitigating Evasion

e Mitigating evasive behavior in malware so that analysis can proceed
unhindered

e Early approaches
o Binary Modification
o Hiding Environment Artifacts
o State Modification
o Multi-Platform Record and Replay
Path Exploration
Hypervisor-based Analysis
Bare Metal Analysis & SMM-based Analysis
Discussion

Early Approaches

e Binary Modification
o 2006: Vasudevan et al. - Cobra

o Emulate code in blocks like QEMU

m Remove or rewrite malware
instructions that could be used for
detection

e Hiding Environmental Artifacts
o 2007: Willems et al. - CWSandbox
m In system kernel driver hides
environmental artifacts

o Oberheide later demonstrated several
detection techniques against CWSandbox

IS

g

State Modification

o 2009: Kang et al.
m Builds upon detection work
m “dynamic state modification” (DSM),
modifications to state force
malware execution down alternative
paths

Multi-Platform Record and Replay

o 2012:Yanetal.-V2E
m Kang et al.'s DSMs are not scalable
for multiple anti-analysis checks
m Don't mitigate individual
occurrences of evasion, make
evasion irrelevant because systems
are inherently transparent

Path Exploration

e 2007: Moser et al.

o Looks broadly at code coverage and analyzing trigger-based malware
o Track when input is used to make control flow decisions, change it to force execution down
different code paths

e 2008: Brumley et al. - MineSweeper

o Trigger-based malware focused
o Represents inputs to potential triggers symbolically, while other code is executed concretely

Hypervisor-based Analysis

e 2008: Dinaburg et al. - Ether

o Catch system calls and context switches from Xen

o Despite extensive efforts to make analysis transparent, Pék et al. created nEther and were
able to detect Ether

e 2009: Nguyen et al. - MAVMM

o AMD SVM with custom hypervisor
o Thompson et al. subsequently demonstrated timing attacks that can be used to detect
MAVMM and other hypervisor based systems

e 2014: Lengyel et al. - DRAKVUF

o Xen-based, instruments code with injected breakpoints

Bare Metal Analysis

e 2011, 2014: Kirat et al. - BareBox &

BareCloud

o BareBox - in-system kernel driver
o BareCloud - post-run disk forensics

e 2012: Willems et al.
o Hardware-based branch tracing features
O Analyzed evasive PDFs

e 2016: Spensky et al. - LO-PHI
o Instrument physical hardware
o Capture RAM and disk activity at the
hardware level
o Scriptable user keyboard/mouse
interaction with USB-connected Arduinos

SMM-based analysis: all the transparency
benefits of bare metal, while restoring
introspection
o Full access to system memory, protection
from modification, high speed, protection
from introspection

2013 & 2015: Zhang et al. - Spectre, MalT
o Spectre: SMM-based analysis, 100x faster
than VMM based introspection
o MalT - SMM-based debugging

2016: Leach et al. - Hops
o SMM memory snapshotting and PCl-based
instrumentation

Mitigation - Discussion

e Two broad categories: active and passive mitigation
o Active - detect-then-mitigate
o Passive - build inherent transparency

e Passive approaches have been more prevalent
o Hypervisors, bare metal, etc

e Bare metal is the cutting edge in academic research, but it may not be

scalable to industry applications
o Promising, but not a panacea against any class of attacks other than CPU-based

Presentation Outline

Introduction

Offense - Detecting Analysis Systems
Defense - Detecting Malware Evasion
Defense - Mitigating Malware Evasion
Discussion

Conclusion

o ghs bh =

Discussion

Offensive Research

@)

(@)

Reverse Turing Tests
Detecting Bare Metal Analysis

Defensive Research

@)

@)

@)

Improving Bare Metal Analysis
Heuristic Evasion Detection
Passing Reverse Turing Tests

e Game Theory Formalizations

e Research Evaluation

(@)

(@)

Establishing Ground Truth
Challenges in research
evaluation

Suggestions for Improvement

Otffensive Research

e Reverse Turing Tests
o Difficult to mitigate against
o Increasingly relevant as analysis systems become transparent
o Look to anti-cheating research for online gaming

e Detecting bare metal analysis

o Still vulnerable to everything except CPU-based attacks
o Look to detecting analysis instrumentation

Defense - Improving Bare Metal Analysis

e Improving bare metal analysis - efficient, introspection, and stalling
mitigation
o Efficiency
m 2016: Vadrevu and Perdisci - MAXS - improve efficiency by 50% on average
with less than 0.3% information loss in analysis

o Introspection
m SMM needs further research

o Stalling mitigation
m Difficult to mitigate against with current bare metal systems
m Performance tracing technologies may provide a direction forward

Defense - Heuristic Evasion Detection

e (Can the behaviors involved in evasion before conditional branching occurs
be detected heuristically?

e |nspirations
o Code fragility may indicate maliciousness
o Heuristic detection in enterprise and personal AV/endpoint products
o Stalling detection techniques
o Anti-anti-DBI heuristics

Defense - Passing Reverse Turing Tests

e Believably simulating human presence as reverse Turing Tests become
more prevalent

e Inspirations:
o UNVEIL's fake file system creation
o LARIAT information assurance testbed
o Biometric spoofing research

Meta - Game Theory Formalizations

e (Cat-and-mouse game of analysis system vs. malware
o Strategy dependent on the “worthiness” of the adversary
o Save advanced techniques for the most advanced opponent
e Stackelberg games
o Allocation of analysis resources by analysis system with randomized strategy
while malware deploys a purely deterministic evasion strategy

Meta - Establishing Ground Truth

e Unknown-unknowns: researchers don't know what they don't know

e Human malware analysis is not scalable

e “Bootstrapping” corpora - use previously generated analysis reports as
ground truth

o Problematic: differences in execution environment and time may lead to
spurious differences

e Collection in the wild

o Challenging for evasive malware
o Collection sources may reveal biases

Meta - Challenges in Research Evaluation

e Evaluated works range from evaluating one lab-created malware sample to
analyzing millions captured in the wild
e Impossible to empirically compare research, or reproduce results

e 2012: Rossow et al. - evaluated the “methodological rigor and prudence” of
36 papers involving malware experimentation from 2006-2011
o Were-emphasize all of the author’s points and recommend researchers read
their paper closely

Meta - Suggestions for Improvement

e Establish ground truth
o Verify analysis results for at least a portion of the malware with a human analyst

e Make multi-execution system similar
o Minimize differences in environment causing spurious differences in execution
o Discuss any unavoidable differences

e Be explicit about malware origins

o Malware corpora may have inherent skews
m VirusTotal - wild samples caught by defenders, or offensive actors doing testing
m APTs-hard to catch

Conclusion & Thank You D E E P

Surveyed in paper: mobile and
web analysis, case studies

Continual evolution of offense and
defense, will to continue into the future
Cutting edge defenses may not be
scalable

Immense challenges to experimental
evaluation and ground truth

Friends who helped us edit: Rolf
Rolles, James Kukucka, Aaron
Sedlacek

RPI support: Jeremy Blackthorne and
Dr. Greg Hughes

Program committee & our
anonymous reviewers - particularly #4
Dr. Sergey Bratus

DeepSec / ROOTS

