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AGENDA

● Who I am
● Why I am talking about OpenDXL
● How it works
● How we can/could use it
● Proof of Concept
● Conclusion and future work
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SUMMARIZING INTRO

● We are daily handling large amount of events 
and incidents with various tools and appliances

● Integration “could be better” (=it should not take 
hundreds of man hours to make things work 
together)

● Evolution makes keeping integrated stuff 
working together harder

● We are short of time and people



ACTIVE RESPONSE

● Security incident flow orchestration tools have 
arrived!

● What about active response, what is it?
● Is it about blocking?
● Is it about deception?
● Is it about attribution?
● Is it about getting even?
● Is it about getting “our stuff back”?



ACTIVE PROTECTION

According to Christopher Ensey 2 there are six conditions to 
be met in order to have active protection in place:

1. Centralized event management

2. Analytics

3. Open APIs

4. Dynamic infrastructure.

5. The Human element

6. Complete visibility



SURPRISING MOVE FROM THE INDUSTRY
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OPEN ARCHITECTURE
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“OPEN” IN OPENDXL

● Based on open standard protocol: MQTT
● No implementation guidelines

● No rules or registry for central element – 
topic

● Client libraries on GitHub
● Broker as Docker image



CORE: MQTT

● Connected clients may subscribe to the data paths 
(topics) and process the data received from there 
however they see fit, clients can also publish data

● Goals: speed and reliability
● Feature: since queuing is not required to be 

supported as a standard feature you’ll miss the 
messages if you are off-line
● Logger/historian type of service could be useful ...

In depth: “Exploiting IoT's MQTT Protocol by (Moshe Zioni)”



SECURITY

● Security is the “S” in IoT ;-)
● TLS securing communication
● Topic based access
● PKI infrastructure for authentication

– Challenge: setting up and maintaining your own 
CA

– Challenge: deal with compromised client on CA  
level



OPTION 1. ORCHESTRATION 

● Transmitted data is interpreted same way 
by all parties

● Interface to control the systems/devices
● Workflow design challenges and 

opportunities
● Good birds eye view of the events
● Many HUGE! mistakes can be avoided



OPTION 2. INDEPENDENT AGENTS

● Can be deployed quickly
● Requires support from 

appliance/application/system
● Anarchy in MQTT topics can be a blocking 

point
● BAD things can (and will) happen
● It is good starting point though ...



OPTION 1. IN MQTT LANGUAGE

Orchestrated

/mcafee/service/tie/cert/reputation/get

/mcafee/service/tie/cert/reputation/set

/mcafee/service/tie/file/reputation/get

/mcafee/service/tie/file/reputation/set

/mcafee/service/tie/file/url/reputation/add

… etc ...

PS! Concept is not so different from RESTTful API, example: /v2/hash/:hash 



OPTION 2. IN MQTT LANGUAGE

Independent

/feed/bad/ipv4

/feed/bad/ipv6

/feed/compromised/ipv4

/feed/compromised/ipv6

… etc ...
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SETTING UP BROKER

● NB! we will not be using any McAfee 
commercial products

● The Docker is required in our broker 
machine

● It’ll take about 5 minutes to set up the 
broker (the coffee machine is far away @ 
office ...)



FIREWALL AGENT

● Simple Python interface to Linux iptables
● Respond to events emitted in topics:

– /feed/bad/ipv4
– /feed/bad/ipv6

● Apply DENY rule



NETFLOW AGENT

● Python interface to open source tool nfdump 
● React to events by looking up records for current 

day:
– /feed/bad/ipv4
– /feed/bad/ipv6

● by looking up records for current day and emitting 
event (only if match is found) with:
– /feed/compromised/ipv4
– /feed/compromised/ipv6



“BADNESS” SENSOR AGENT

● (Really) simple Python logtailer
● Collect 3v1l IPs from file and emit:

– /feed/bad/ipv4
– /feed/bad/ipv6



VM MANAGING AGENT

● Python interface to Virtualbox manager 
● React to events:

– /feed/compromised/ipv4
– /feed/compromised/ipv6

● by looking up IP matches from internal 
dictionary and reverting machine to known 
good state.



RESULT



CONCLUSION

● Great technology to keep an eye on
● Can be a bit challenging to deploy on large installations
● Topic use needs to be regulated to at least two levels from “root”
● Once the OpenDXL data bus client is compromised it can be hard 

to detect and mitigate, meanwhile adversary has in-depth look of 
security databus

● Time will tell if the industry goes with the trend
● Go Play with it! 

– https://github.com/opendxl
– https://github.com/zyxtarmo/opendxl-pocs



THANK YOU!

Research on
Automated Active Response Orchestration

using OpenDXL will be completed 2018

Ping me if you are interested
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