
OPENDXL IN
ACTIVE RESPONSE SCENARIOS

Tarmo Randel
CCD COE

November 2017

AGENDA

● Who I am
● Why I am talking about OpenDXL
● How it works
● How we can/could use it
● Proof of Concept
● Conclusion and future work

BEWARE!

ABOUT MYSELF

IN RESPONSE TO KEYNOTE -
THAT WAS OUR AWARENESS RISING

CAMPAIGN!

ABOUT CCDCOE

R E S E A R C H E X E R C I S ET R A I N I N G

T E C H N O L O G Y

S T R A T E G Y

O P E R A T I O N S

L A W

RESEARCH AREAS

Image copyright: www.militaryaerospace.com

CLOSER TO THE TOPIC

CLOSER TO THE TOPIC

 Devices (billion)

Countries with national
cybersecurity strategies

Countries with declared
offensive capabilities

Cyber commands
2000 2005 2010 2016 2020
0

5

10

15

 Users (billion)

Countries developing
legislative initiatives95

77

17

20+

GROWTH OF CYBERSPACE

SHOULD
WANT

MUST ...

Picture copyright: probably tisiphone.net

SUMMARIZING INTRO

● We are daily handling large amount of events
and incidents with various tools and appliances

● Integration “could be better” (=it should not take
hundreds of man hours to make things work
together)

● Evolution makes keeping integrated stuff
working together harder

● We are short of time and people

ACTIVE RESPONSE

● Security incident flow orchestration tools have
arrived!

● What about active response, what is it?
● Is it about blocking?
● Is it about deception?
● Is it about attribution?
● Is it about getting even?
● Is it about getting “our stuff back”?

ACTIVE PROTECTION

According to Christopher Ensey 2 there are six conditions to
be met in order to have active protection in place:

1. Centralized event management

2. Analytics

3. Open APIs

4. Dynamic infrastructure.

5. The Human element

6. Complete visibility

SURPRISING MOVE FROM THE INDUSTRY

Picture copyright: McAfee

OPEN ARCHITECTURE

Picture copyright: McAfee

“OPEN” IN OPENDXL

● Based on open standard protocol: MQTT
● No implementation guidelines

● No rules or registry for central element –
topic

● Client libraries on GitHub
● Broker as Docker image

CORE: MQTT

● Connected clients may subscribe to the data paths
(topics) and process the data received from there
however they see fit, clients can also publish data

● Goals: speed and reliability
● Feature: since queuing is not required to be

supported as a standard feature you’ll miss the
messages if you are off-line
● Logger/historian type of service could be useful ...

In depth: “Exploiting IoT's MQTT Protocol by (Moshe Zioni)”

SECURITY

● Security is the “S” in IoT ;-)
● TLS securing communication
● Topic based access
● PKI infrastructure for authentication

– Challenge: setting up and maintaining your own
CA

– Challenge: deal with compromised client on CA
level

OPTION 1. ORCHESTRATION

● Transmitted data is interpreted same way
by all parties

● Interface to control the systems/devices
● Workflow design challenges and

opportunities
● Good birds eye view of the events
● Many HUGE! mistakes can be avoided

OPTION 2. INDEPENDENT AGENTS

● Can be deployed quickly
● Requires support from

appliance/application/system
● Anarchy in MQTT topics can be a blocking

point
● BAD things can (and will) happen
● It is good starting point though ...

OPTION 1. IN MQTT LANGUAGE

Orchestrated

/mcafee/service/tie/cert/reputation/get

/mcafee/service/tie/cert/reputation/set

/mcafee/service/tie/file/reputation/get

/mcafee/service/tie/file/reputation/set

/mcafee/service/tie/file/url/reputation/add

… etc ...

PS! Concept is not so different from RESTTful API, example: /v2/hash/:hash

OPTION 2. IN MQTT LANGUAGE

Independent

/feed/bad/ipv4

/feed/bad/ipv6

/feed/compromised/ipv4

/feed/compromised/ipv6

… etc ...

PROOF OF CONCEPT

PROOF OF CONCEPT

SETTING UP BROKER

● NB! we will not be using any McAfee
commercial products

● The Docker is required in our broker
machine

● It’ll take about 5 minutes to set up the
broker (the coffee machine is far away @
office ...)

FIREWALL AGENT

● Simple Python interface to Linux iptables
● Respond to events emitted in topics:

– /feed/bad/ipv4
– /feed/bad/ipv6

● Apply DENY rule

NETFLOW AGENT

● Python interface to open source tool nfdump
● React to events by looking up records for current

day:
– /feed/bad/ipv4
– /feed/bad/ipv6

● by looking up records for current day and emitting
event (only if match is found) with:
– /feed/compromised/ipv4
– /feed/compromised/ipv6

“BADNESS” SENSOR AGENT

● (Really) simple Python logtailer
● Collect 3v1l IPs from file and emit:

– /feed/bad/ipv4
– /feed/bad/ipv6

VM MANAGING AGENT

● Python interface to Virtualbox manager
● React to events:

– /feed/compromised/ipv4
– /feed/compromised/ipv6

● by looking up IP matches from internal
dictionary and reverting machine to known
good state.

RESULT

CONCLUSION

● Great technology to keep an eye on
● Can be a bit challenging to deploy on large installations
● Topic use needs to be regulated to at least two levels from “root”
● Once the OpenDXL data bus client is compromised it can be hard

to detect and mitigate, meanwhile adversary has in-depth look of
security databus

● Time will tell if the industry goes with the trend
● Go Play with it!

– https://github.com/opendxl
– https://github.com/zyxtarmo/opendxl-pocs

THANK YOU!

Research on
Automated Active Response Orchestration

using OpenDXL will be completed 2018

Ping me if you are interested

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

