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Side Channels

Hardware Side Channels in Virtualized
Environments




What are side channel attacks? "ights

- Attacker can observe the target system. Must be
‘neighboring’ or co-located.

- Ability to repeatedly query the system for leaked artifacts.

- Artifacts: changes in how a process interacts with the
computer
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Variety of Side Channels

Different target systems implies different methods for observing.

- Fault attacks
- Requires access to the hardware.

- Simple power analysis
- Requires proximity to the system.
- Power consumption measurement mapped to behavior.

- Different power analysis
- Requires proximity to the system.
- Statistics and error correction gathered over time.

- Timing attacks
- Requires same process co-location.
- Network packet delivery, cache misses, resource contention.



Information gained through o
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changes in the system
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Implementation:
The Black Box
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Powered sampled at
even intervals across
time.



Side Channel Checklist "l

- Transmitter Target Malicious actor
- Deterministic cause and effect.

- Receiver
- Record changes in environment
without altering its readings

- Medium
- Shared environment
- Accountable sources of noise




Targeting Hardware
The Hidden Attack Surface
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B'7s
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Communication Between Processes

Using Hardware

Malicious Malicious
Transmitter Receiver
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Available Hardware

Shared environment on computers, accessible from software
processes. Hardware resources shared between processes.

( 3\
o e v Software
- Processors (CPU/ GPU) |
. \3 T T I T —/
- Cache Tiers Y v ¥ ¥ v v
- System Buses VMM: XEN (physical resource allocation)
- Main Memory 4 4 4
- Hard Disk Drive 4 core 1 | [core 2 | [ Core 3 1\ Hardware
L1 Cache L1 Cache L1 Cache
L2 Cache L2 Cache L2 Cache
L3 Cache
Main Memory
\d Y

10
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Side Channel Attacks Over Hardware

Physical co-location leads to side channel
vulnerabilities.

Processes share hardware resources
Dynamic translation based on need
Allocation causes contention




Cloud Computing (laa$S)

Perfect environment for hardware based side

channels: Ef;g:"“
- Virtual instances
- Hypervisor schedules resources 0
between all processors on a server
Security ‘
Dynamic allocation St

- Reduces cost
Network

Operating
System

Virtualization Layer
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Vulnerable Scenarios in the Cloud

Sensitive data stored remotely
Vulnerable host

Untrusted host

Co-located with a foreign VM

DEMAND A SAFER CLOUD

LEARN MORE !




Building A Novel Attack
A Side Channel Recipe
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Cloud Computing Side Channel
Scenarios

Shared hardware
Dynamically allocated hardware resources
Co-Location with adversarial VMs, infected VMs, or Processes

VM

" |

H

TRA)L
a/B To

VM

E

VM

VM
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Cloud Computing Side Channel - A
D

Medium: Shared artifact from a hardware unit

"Privilege Separation”: Virtual Machine or process

Method: Information gained through recordable changes in the system
Vulnerability: Translation between physical and virtual, dynamic!

16



First Ingredient: Hardware Medium %

Choose Medium: Measure shared hardware unit’'s changes over time

Cache

Processor Rtle

System Bus m Hﬂugcnbo;

uuuuuu

Main Memory

HDD



Second Ingredient: Measuring o
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Choose Vulnerability: Measure artifact of shared
resource.

Timing attacks (usually best choice)

- Cache misses, stored value farther away in
memory

- Value Errors
- Computation returns unexpected result

- Resource contention

- Locking the memory bus

- Other measurements recordable from inside a
process, in a VM



Third Ingredient: Attack Model "

Choose S/R Model: What processes are involved in creating the channel depend on intended
use cases.

Transmit only
Application: DoS Attack
Sender only

Record only
Application: Crypto key theft
Receiver only

Bi-way

Application: Communication channel



Some channels are easier than -
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Case Study 1: Locking the memory bus
- Pro: efficient, no noise, good bandwidth
- Con: highly noticeable

Case Study 2: Everyone loves Cache.
- Pro: hardware medium is ‘static’

- Con: most common, mitigations are quickly developed



Some channels are easier than
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Technical Difficulties:

Querying the specific hardware unit

Difficulty/ reliability unique to each hardware unit
Number of repeated measurements possible
Frequency of measurements allowed



Measuring Devices for Hardware o
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Hardware Medium Transmitting Mechanism | Reception Mechanism
Processor Processor Register and Time Compared Against
Functional Unit Resources | Threshold
Contention
Cache Tier Prime-Probe, Shared Time Compared Against
Cache Functionality Threshold
System Bus System Bus Restricted Measurement of Memory
Access Contention Access Capabilities
Main Memory Prime-Probe, Shared Main | Measurement of Memory
Memory Storage Access Capabilities
Hard Disk Drive Prime-Probe, Shared Disk | Time Compared Against
Drive Data Access Threshold




Some Example Hardware Side

Channels

Medium Transmission |Reception |Constraints
Need to Share
L1 Cache Prime Probe Timing Processor Space
Caches Missing Causes
L2 Cache Prime Probe/ Preemption Timing Noise

Main Memory

SMT Paging

Measure Address
Space

Peripheral Threads
Create Noise

Halts all Processes

Memory Bus Lock & Unlock Memory Bus Measure Access Requiring the Bus
CPU Functional mo' Threads, mo'
Units Resource Eviction & Usage Timing Problems
Hard Disc Contention - Dependent on multiple
Hard drive Access Files Frantically Timing readings of files
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A Novel Attack "BiTs

1) Medium:
CPU Pipeline Optimization

2) Vulnerability:
Erroneous Values. Computation returns unexpected result (SMT optimizations).

3) Model:
Develop both a sender and receiver

General setup: Cross VM or Process.



CPU Optimizations
Uses of Out-Of-Order Execution




A Novel Attack "

Side Channel exploiting the pipeline’s common optimization of re-ordering instructions.

- Regardless of process ownership
- Some re-ordering fails and computation result changes



Receiver: Measuring OoOE
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8234 Loads May Be Reordered with Earlier Stores to Different Locations

The Intel-64 memory-ordering model allows a load to be reordered with an earlier store to a different location.
However, loads are not reordered with stores to the same location.

The fact that a load may be reordered with an earlier store to a different location is illustrated by the following

example:
Example 8-3. Loads May be Reordered with Older Stores
Processor 0 Processor 1
mov [ _x], 1 mov [ _y], 1
mov r1,[ _y] mov r2, [ _x]
Initially x =y =0

ri =0 andr2 =0 is allowed




THREAD 1 THREAD 2

store store
Synche |[x], 1 [Y], 1 =>rl =r2=
d
foadrl,  'loadr2, 1
Asynch store store
ed [X], 1 [Y] 1 =>rl1=01r2
toadTt— Hoadr2;— =1
Out of |oad rl, Ioad r2,
Order [Y] [X] = >rl=r2=
Executi
—on store— store— O
[X], 1 [Y], 1




TRA

Receiver: Measuring OoOE s

int X,Y,count_Oo0OE;
....initialize semaphores Semal & Semaz2... 00OE
pthread_t threadl, thread2; -
pthread create(&threadN, NULL, threadNFunc, NULL);

. . . . . 8 3000
for (int iterations = 1; ; iterations++) S 20m i
XY = 0 1 e Mo

13 57 9111315171921232537293133353739414345474951 |

sem_post(beginSemal & beginSema2);
sem_wait(endSemal & endSema?2);

if (rl ==0&&r2 == 0)
count_ OoOE ++;
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Sender: Transmit OoOE “iglts

Force Deterministic Memory Reordering:
- Compile-time vs Runtime Reordering

Runtime:
- Usually strong memory model: x86/64 (mostly sequentially consistent)
-  Weaker models (data dependency re-ordering): arm, powerpc

acquire semantics

Barriers: e —— = T
v #LoadLoad i #LoadStore 1 ;
- 4 types of run time reordering barriers =~ TTTttmsoossssssssssssess :

#Storeload : #StoreStore

release semantics



Sender: Transmit OoOE "l

Memory Fences

Mfence:

x86 instruction full memory barrier
prevents memory reordering of

any kind _ WEAK STRONG
order of 100 cycles per operation
lock-free programm in g on SMT Really weak Weak with Usually strong Sequentially
. data dependency miplicit acquire consistent
multiprocessors ordering release & TS0, usuall
DEC Alpha ARM xSEi dual 386 (circa 1989)
‘ gﬁ h a— ﬂl w\
| ?;’C *I' +11 ) PowerPC SPARC TS50 Java volatile
ow-level atomics . — {:JFC+ 11
ok - default atomics
\F] : or,
.y - Mi Smen,

Source control without optimization
analogy
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Sender: Transmit OoOE Whe

mfence (x86)
#StoreLoad unique prevents r1=r2=0
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Testing: Hardware Architectures Blts

Core Core 0 Core 1 Core 0 Core 1 Core 0 Core 1
[ Licache | [L1cache | [Licache || |[L1cache | [L1 cache | [ L1 cache | [L1 cache |
L2 cache L2 cache
L2 cache L2 cache L2 cache L2 cache
L3 cache L3 cache

single core AMD Optetran, Athlon ntel Core Duo, Xeon fintel ftanivm 2

Lab Setup:
- Intel’s Core Duo, Xeon Architecture
- Each processor has two cores
- The Xen hypervisor schedules between all processors on a server
- Each core then allocates processes on its pipeline

Notes:
- Multiple processes run on a single pipeline (SMT)
- Relaxed memory model



Testing: Setup
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6 Windows 7 VM's

VM1 VM2 VM3 VM4 VM5 VM6
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Testing: Setup s

+ v
[VM M

CL L L]

Pipeline
SMT .

Optimizes Core(Q1l | Core02 Executing
Shared Instructions
Hardware From Foreign

PrOceSSOr Applications
- Y
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Results

Testing

Sending signal: 001000.
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Testing: Results Bl

Benefits:

Harder for a intelligent hypervisor to detect, quiet
- Eavesdropping sufficiently mutilates channel

- System artifacts sent and queried dynamically

- Not affected by cache misses

- Channel amplified with system noise

- Immediately useful for malware, leaking system behavior, environmental keying,
algorithm identification

More Info: https://www.sophia.re/SC



Defenses
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Defensive Mechanisms: Hardware Blrs

Protected Resource Ownership:
- Isolating VM'’s
- Turn off hyperthreading

- Blacklisting resources for concurrent
threads

- Downside: removes optimizations or
benefits of the cloud




Defensive Mechanisms: Hypervisor "%

Anomaly detection:
- Specification
- Pattern recognition
- Records average OoOE patterns

- Predicts what to expect



TBAIL .
B'TS

Defensive Mechanisms: Software

Control Flow Changes:
- Hardening software with Noise

- Force specific execution patterns (i.e.
constant time loops, ...)

- Avoid using certain resources

- Downside: compiler, hardware
optimizations lost
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Virtualization Considerations

Side Channel Potential:

More resource sharing

More dynamic optimizations

Virtualization more popular

Malware

Things to Consider:
- Cloud Side Channels apply to anything with virtualization (i.e. VM’s)
- Hypervisors are easy targets: Vulnerable host

i.e. “Xenpwn”, paravirtualized driver attack: INFILTRATECon 2016



The Future




Optimizations!
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Intel Architecture
Optimization Manual

Order Number 242816-003
1997



TRAL
To

Optimizations! 7

2.2 THE PENTIUM® PRO PROCESSOR

The Pentium Pro processor family uses a dynamic execution architecture that blends out-of-
order and speculative execution with hardware register renaming and branch prediction.
These processors feature an in-order issue pipeline, which breaks I[A processor
macroinstructions into simple, micro-operations called micro-ops or pops, and an out-of-
order, superscalar processor core, which executes the micro-ops. The out-of-order core of the
processor contains several pipelines to which integer, branch, floating-point and memory
execution units are attached. Several different execution units may be clustered on the same
pipeline. For example, an integer arithmetic logic unit and the floating-point execution units
(adder, multiplier and divider) share a pipeline. The data cache is pseudo-dual ported via
interleaving, with one port dedicated to loads and the other to stores. Most simple operations
(such as integer ALU, floating-point add and floating-point multiply) can be pipelined with a
throughput of one or two operations per clock cycle. The floating-point divider is not
pipelined. Long latency operations can proceed in parallel with short latency operations.

The Pentium Pro processor pipeline contains three parts: (1) the in-order issue front-end,
(2) the out-of-order core, and (3) the in-order retirement unit. Figure 2-3 details the entire
Pentium Pro processor pipeline.



Optimizations! K

- Processor Register and Functional Unit
- Out-Of-Order Execution
- Speculative Execution
- Branch Prediction
- 1 Pipeline, multiple execution units
- i.e. Integer ALU and FPU (adder, multiplier and divider) share a pipeline
- Data cache pseudo-dual ported via interleaving
- “Long latency operations can proceed in parallel with short latency operations.”



Optimizations! K

- Processor Register and Functional Unit
- Out-Of-Order Execution
- Speculative Execution
- Branch Prediction
- 1 Pipeline, multiple execution units
- i.e. Integer ALU and FPU (adder, multiplier and divider) share a pipeline
- Data cache pseudo-dual ported via interleaving
- “ Long latency operations can proceed in parallel with short latency operations.”



Optimizations!

L1 Data Cache Loads can:

Read data before preceding stores when the load address and store address ranges

are known not to

Conflict.
- Be carried out speculatively, before preceding branches are resolved.

- Take cache misses out of order and in an overlapped manner.
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=YOU'GET"A'SIDE*CHANNEL;
AND YOU GEIfA SIDE CHANNEL

L —— ~

'EVERYONE GETS A SIDE CHANNEL

P



TRA)L

“Blte

Speculative Execution

Bad speculation - The pipeline performs speculative execution of instructions that never successfully
retire. The most common case is a branch misprediction where the pipeline predicts a branch target
in order to keep the pipeline full instead of waiting for the branch to execute. If the processor
prediction is incorrect it has to flush the pipeline without retiring the speculated instructions.



Speculative Execution
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mov rax,[addr 0]

mov rbx,[addr 1]



Speculative Execution
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mov rax,[addr 0]
add rax, 1

mov rbx,[rax + addr 1]



Speculative Execution
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mov rax,[addr 0]
add rax, 1

mov rbx,[rax + addr 1%

Time Memory Load



Speculative Execution K2

Uses: Arbitrary Kernel Memory Leak!

mov rax,[k addr]

- Interrupt occurs

- Undefined behavior
- Timing of finished instruction execution and actual retirement
- mov potentially sets the results in the reorder buffer

Goal: Speculatively execute instructions after mov, based on reorder buffer value.



Speculative Execution
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syscall <
mov rax,[k addr] <
add rax, 1

mov rbx,[rax + addr 1%

Force target into
cache

Guessed address

Time to validate
guess



Speculative Execution: Tomasulo o
h /0

oot

L1 Data
Cache

Reorder Commit syscall

[ ] Buffer

mov rax,[k _addr]
add rax, 1

mov rbx,[rax + addr ]




Speculative Execution: Tomasulo o

L1 Data
Cache Reorder syscall

[ ] Buffer

mov rax,[k addr]
add rax, 1

mov rbx,[rax + addr ]




Speculative Execution: Tomasulo o

Alanrirhm
(leu ILIII |

L1 Data

Cache Reorder Commit syscall
[ ] Buffer

mov rax,[k addr]
add rax, 1

mov rbx,[rax + addr




Speculative Execution: Tomasulo o

L1 Data

Cache Reorder Commit syscall
[ ] Buffer

mov rax,[k addr]
add rax, 1

mov rbx,[rax + addr




Speculative Execution ke

Test target: Intel Broadwell CPU

- While goal k_addr value might not be given directly
- Use cache side channel to verify result or not
- Failed on this target, but...
- Does process illegal read from k_addr (!)
- Does not copy value into reorder buffer :<
- Loads from data cache during speculative execution
- Speculative execution & data loads do occur after violation of kernel/user read



Speculative Execution
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Test target: Intel Broadwell CPU

- While goal k_addr value might not be given directly
- Use cache side channel to verify result or not
- Failed on this target, but...

Does process illegal read from k_addr (!)

Does not copy value into reorder buffer :<

Loads from data cache during speculative execution

Speculative execution & data loads do occur after violation of kernel/user read

To be continued....
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email: sophia@trailofbits.com
website: www.sophia.re
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What are side channel attacks? Blts

- Attacker can observe the target system. Must be
‘neighboring’ or co-located.

- Ability to repeatedly query the system for leaked artifacts.

- Artifacts: changes in how a process interacts with the
computer
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Variety of Side Channels ks

Different target systems implies different methods for observing.
- Fault attacks
- Requires access to the hardware.

- Simple power analysis
- Requires proximity to the system.
- Power consumption measurement mapped to behavior.

- Different power analysis
- Requires proximity to the system.
- Statistics and error correction gathered over time.

- Timing attacks

- Requires same process co-location.
- Network packet delivery, cache misses, resource contention.

Crypto stuff



Information gained through o
changes in the system

t=n

a N

Powered sampled at
even intervals across

Implementation: > > T time.

The Black Box




Side Channel Checklist "Blhs

- Transmitter Target Malicious actor
- Deterministic cause and effect.

- Receiver
- Record changes in environment
without altering its readings
- Medium
- Shared environment

- Accountable sources of noise

Software AND Hardware both



Targeting Hardware
The Hidden Attack Surface

TRAL
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Bk

Communication Between Processes 5

Using Hardware

Malicious Malicious
Transmitter Receiver

Software AND Hardware both
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Available Hardware o
Shared environment on computers, accessible from software
processes. Hardware resources shared between processes.
Software
- Processors (CPU/ GPU) I R R |
- Cache Tiers Yy v Vv v v ¥
- System Buses lVMM: XEN (physical resource allocation) |
- Main Memory ) 4 [}
- Hard Disk Drive (Core1 ) [Core2 ] [ Cores ] | Hardware
[ 3cache |
Main Memory
10

Software AND Hardware both



TRAL
B'TS

Side Channel Attacks Over Hardware

Physical co-location leads to side channel
vulnerabilities.

Processes share hardware resources

Dynamic translation based on need
Allocation causes contention

Software AND Hardware both
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Cloud Computing (laaS)

Perfect environment for hardware based side
channels:
- Virtual instances Server
- Hypervisor schedules resources
between all processors on a server

Dynamic allocation Security
- Reduces cost

Network

Software AND Hardware both Virtualization Layer
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Vulnerable Scenarios in the Cloud

- Sensitive data stored remotely
- Vulnerable host

- Untrusted host

- Co-located with a foreign VM

AND A SAFER CLOUD

[_LEAF‘P-. MORE |

Software AND Hardware both



Building A Novel Attack
A Side Channel Recipe
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Cloud Computing Side Channel B
Scenarios

Shared hardware
Dynamically allocated hardware resources
Co-Location with adversarial VMs, infected VMs, or Processes

VM VM VM VM VM
|l W

H H

15

Software AND Hardware both



Cloud Computing Side Channel - LT

~ Primitives

Medium: Shared artifact from a hardware unit

"Privilege Separation”: Virtual Machine or process

Method: Information gained through recordable changes in the system
Vulnerability: Translation between physical and virtual, dynamic!

16

Software AND Hardware both



First Ingredient: Hardware Medium

Choose Medium: Measure shared hardware unit’'s changes over time
- Cache
- Processor
- System Bus
- Main Memory

- HDD

Software AND Hardware both



Second Ingredient: Measuring .
- Device
Choose Vulnerability: Measure artifact of shared

Timing attacks (usually best choice)

- Cache misses, stored value farther away in
memory

- Value Errors

- Computation returns unexpected result
- Resource contention

- Locking the memory bus

- Other measurements recordable from inside a
process, in a VM

Software AND Hardware both



Third Ingredient: Attack Model "lhs

Choose S/R Model: What processes are involved in creating the channel depend on intended
use cases.

- Transmit only
- Application: DoS Attack
- Sender only
- Record only
- Application: Crypto key theft
- Receiver only
- Bi-way

- Application: Communication channel

Software AND Hardware both




Some channels are easier than o
othar o
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Case Study 1: Locking the memory bus
- Pro: efficient, no noise, good bandwidth
- Con: highly noticeable

Case Study 2: Everyone loves Cache.
- Pro: hardware medium is ‘static’

- Con: most common, mitigations are quickly developed

Software AND Hardware both



Some channels are easier than o
ntharc o

UULUIITTI O

Technical Difficulties:
® Querying the specific hardware unit
@ Difficulty/ reliability unique to each hardware unit
® Number of repeated measurements possible
@® Frequency of measurements allowed

Software AND Hardware both



Measuring Devices for Hardware

M
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Hardware Medium Transmitting Mechanism | Reception |
Processor Processor Register and Time Comp
Functional Unit Resources | Threshold
Contention
Cache Tier Prime-Probe, Shared Time Comp
Cache Functionality Threshold
System Bus System Bus Restricted Measureme
Access Contention Access Cap
Main Memory Prime-Probe, Shared Main | Measureme
Memory Storage Access Cap
JHarshBisk Driveon Prime-Probe, Shared Disk | Time Comp.

Drive Data Access

Threshold




Some Example Hardware Side o
- Channels

Medium Transmission |Reception |Constraints
Need to Share

L1 Cache Prime Probe Timing Processor Space
Caches Missing Causes
L2 Cache Prime Probe/ Preemption Timing Noise
Measure Address Peripheral Threads
Main Memory SMT Paging Space Create Noise
Halts all Processes
Memory Bus Lock & Unlock Memory Bus Measure Access Requiring the Bus
CPU Functional mo' Threads, mo'
Units Resource Eviction & Usage Timing Problems
Hard Disc Contention - Dependent on multiple
Hard drive Access Files Frantically Timing readings of files

See how they all follow the recipe. Existing work. Abstraction is KEY!
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A Novel Attack WYk

1) Medium:
CPU Pipeline Optimization

2) Vulnerability:
Erroneous Values. Computation returns unexpected result (SMT optimizations).

3) Model:
Develop both a sender and receiver

General setup: Cross VM or Process.

Smt optimizations are key for this pipeline attack. Optimizations are a great
vulnerability in general.



CPU Optimizations
Uses of Out-Of-Order Execution
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A Novel Attack "k

Side Channel exploiting the pipeline’s common optimization of re-ordering instructions.

- Regardless of process ownership
- Some re-ordering fails and computation result changes

Smt optimizations are key for this pipeline attack. Optimizations are a great
vulnerability in general.



Receiver: Measuring OoOE s

8234 Loads May Be Reordered with Earlier Stores to Different Locations

The Intel-64 memory-ordering model allows a load to be reordered with an earlier store to a different location.
However, loads are not reordered with stores to the same location.

The fact that a load may be reordered with an earlier store to a different location is illustrated by the following
example:

Example 8-3. Loads May be Reordered with Older Stores

Processor 0 Processor 1
mov [ _x], 1 mov [ _y], 1
mov ri,[ _y] mov r2,[ _x]
Initially x =y =0

ri =0andr2 =0 is allowed

Smt optimizations are key for this pipeline attack. Optimizations are a great
vulnerability in general.



THREAD 1 THREAD 2

Order
Executi
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Receiver: Measuring OoOE s
int X,Y,count_OoOE;
....initialize semaphores Semal & Semaz2... ( 000E
pthread_t threadl, thread?2; gjﬁi :
pthread_create(&threadN, NULL, threadNFunc, NULL); ééEE lﬂl
5 <o [l

for (int iterations = 1; ; iterations++) %Zii H

XY = 0: ‘g“’“‘; w\mx\/"vﬁJ ll/bf\;WW“VW—\

sem_post(beginSemal & beginSemaz2);
sem_wait(endSemal & endSema?2);

if (rl ==0&&r2==0)
count_OoOE ++;

Smt optimizations are key for this pipeline attack. Optimizations are a great
vulnerability in general.




Sender: Transmit OoOE ks

Force Deterministic Memory Reordering:
- Compile-time vs Runtime Reordering

Runtime:

- Usually strong memory model: x86/64 (mostly sequentially consistent)

- Weaker models (data dependency re-ordering): arm, powerpc
acquire semantics
Barriers: _\ .................... GEoIIIITIIIIIIIIIIN N,
\ #LoadLoad #LoadStore |}

- 4 types of run time reordering barriers ~ Tesssssssssssssssseseees flasssssssssesssssssees
#StoreLoad : #StoreStore

release semantics

-  #StoreLoad most expensive
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Memory Fences

Mfence:
- x86 instruction full memory barrier
- prevents memory reordering of

any kind _ WEAK STRONG
- order of 100 cycles per operation
- lock-free programming on SMT Really weak < Weak with < Usually strong < Sequentially
. data dependency plicit acquire, consistent
multiprocessors ordering elease & TS0
DEC Alpha ARM xssa dual 386 (circa 1989)
@E — —-II
C/C++11 PowerPC SPARC TSO Java volatile

low-level atomics

e )In‘i -

Source control
analogy

2 types of memory reordering, GCC
Multithreaded
Programs
Or pipeline type

€/C++11

default atomics

Or, run on
a single core
without optimization
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mfence (x86)
#StoreLoad unique prevents rl=r2=0

NOP Store [X], 1 Load 1, [X] NOP

2 types of memory reordering, GCC
Multithreaded
Programs
Or pipeline type
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| Core

| Core 0 | | Core 1 |

| Core 0 | | Core 1 |

| Core 0 | | Core 1 |

[ L1 cache

[L1 cache | [L1 cache |

[L1 cache | [L1cache ]

[L1 cache | [L1cache ]

| L2 cache

| L2 cache | | L2 cache |

| L2 cache |

single core

Lab Setup:

Intel’s Core Duo, Xeon Architecture

AMD Optetron, Athlon

Each processor has two cores
The Xen hypervisor schedules between all processors on a server
Each core then allocates processes on its pipeline

Notes:
Multiple processes run on a single pipeline (SMT)
Relaxed memory model

2 types of memory reordering, GCC

Multithreaded
Programs
Or pipeline type

Intel Core Duo, Xeon

Intef ltaniuvm 2
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Testing: Setup

6 Windows 7 VM’s

2 types of memory reordering, GCC
Multithreaded
Programs
Or pipeline type
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SN MBI
. -

Pipeline
SMT i
Optimizes CO reO 1 CO re02 Executing
Shared FInstrll:Jct|c_>ns
rom Foreign
Hardware Processo r Applications

N J

2 types of memory reordering, GCC
Multithreaded
Programs
Or pipeline type
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Testing: Results

Sending signal: 001000.

0.00014

0.00012

000004
0.00002

!

2

fAouan ru_._u_ JO o0

A e

ELFS
arEs
LT05
BELF
T95¢F
EEEF
SO0TF
LEBE
GroE
TEFE
EGTE
296
LELT
6052
\ZL
ESOEZ
SEET
LB5T

ueried hardware unit terations

=]
(Y]
(151
—l

TFTT
ETE
289
Lot
GEC

Process changes signature of

over time

MALWARE USES ETC
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Testing: Results it

Benefits:
- Harder for a intelligent hypervisor to detect, quiet
- Eavesdropping sufficiently mutilates channel
- System artifacts sent and queried dynamically
- Not affected by cache misses
- Channel amplified with system noise

- Immediately useful for malware, leaking system behavior, environmental keying,
algorithm identification

More Info: https://www.sophia.re/SC
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Defensive Mechanisms: Hardware Blts

Protected Resource Ownership:
- Isolating VM's
- Turn off hyperthreading

- Blacklisting resources for concurrent
threads

- Downside: removes optimizations or
benefits of the cloud




Defensive Mechanisms: Hypervisor "

Anomaly detection:
Specification
Pattern recognition
Records average OoOE patterns

Predicts what to expect
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Defensive Mechanisms: Software

Control Flow Changes:
Hardening software with Noise

Force specific execution patterns (i.e.
constant time loops, ...)

Avoid using certain resources

Downside: compiler, hardware
optimizations lost
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Virtualization Considerations Bt

Side Channel Potential:
- More resource sharing
- More dynamic optimizations
- Virtualization more popular
- Malware
Things to Consider:
- Cloud Side Channels apply to anything with virtualization (i.e. VM’s)
- Hypervisors are easy targets: Vulnerable host

i.e. “Xenpwn”, paravirtualized driver attack: INFILTRATECon 2016



The Future




TRAL

Optimizations! Bl

Intel Architecture
Optimization Manual

Order Number 242816-003
1997



Optimizations! Bl

2.2 THE PENTIUM® PRO PROCESSOR

The Pentium Pro processor family uses a dynamic execution architecture that blends out-of-
order and speculative execution with hardware register renaming and branch prediction.
These processors feature an in-order issue pipeline, which breaks IA processor
macroinstructions into simple, micro-operations called micro-ops or pops, and an out-of-
order, superscalar processor core, which executes the micro-ops. The out-of-order core of the
processor contains several pipelines to which integer, branch, floating-point and memory
execution units are attached. Several different execution units may be clustered on the same
pipeline. For example, an integer arithmetic logic unit and the floating-point execution units
(adder, multiplier and divider) share a pipeline. The data cache is pseudo-dual ported via
interleaving, with one port dedicated to loads and the other to stores. Most simple operations
(such as integer ALU, floating-point add and floating-point multiply) can be pipelined with a
throughput of one or two operations per clock cycle. The floating-point divider is not
pipelined. Long latency operations can proceed in parallel with short latency operations.

The Pentium Pro processor pipeline contains three parts: (1) the in-order issue front-end,
(2) the out-of-order core, and (3) the in-order retirement unit. Figure 2-3 details the entire
Pentium Pro processor pipeline.



TRAL

Optimizations! Bl

- Processor Register and Functional Unit
- Out-Of-Order Execution
- Speculative Execution
- Branch Prediction
- 1 Pipeline, multiple execution units
- i.e. Integer ALU and FPU (adder, multiplier and divider) share a pipeline
- Data cache pseudo-dual ported via interleaving
- " Long latency operations can proceed in parallel with short latency operations.”
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- Processor Register and Functional Unit
- Out-Of-Order Execution
- Speculative Execution
- Branch Prediction
- 1 Pipeline, multiple execution units
- i.e. Integer ALU and FPU (adder, multiplier and divider) share a pipeline
- Data cache pseudo-dual ported via interleaving
- " Long latency operations can proceed in parallel with short latency operations.”
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Optimizations!

L1 Data Cache Loads can:

Read data before preceding stores when the load address and store address ranges

are known not to

Conflict.
- Be carried out speculatively, before preceding branches are resolved.

- Take cache misses out of order and in an overlapped manner.
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AND YOU GEIfA SIDE CHANN

'EVERYONE GETS A SIDE CHANNEL

P
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Speculative Execution Sl

Bad speculation - The pipeline performs speculative execution of instructions that never successfully
retire. The most common case is a branch misprediction where the pipeline predicts a branch target
in order to keep the pipeline full instead of waiting for the branch to execute. If the processor
prediction is incorrect it has to flush the pipeline without retiring the speculated instructions.



Speculative Execution il

mov rax,[addr_0]

mov rbx,[addr_1]
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Speculative Execution Sl

mov rax,[addr_0]
add rax, 1

mov rbx,[rax + |

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.
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Speculative Execution Sl

mov rax,[addr 0]
add rax, 1

mov rbx,[rax + §——— Time Memory Load

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.
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Speculative Execution Sl

Uses: Arbitrary Kernel Memory Leak!

mov rax,[k addr]

- Interrupt occurs

- Undefined behavior
- Timing of finished instruction execution and actual retirement
- mov potentially sets the results in the reorder buffer

Goal: Speculatively execute instructions after mov, based on reorder buffer value.
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Speculative Execution Blts
syscall <——  Force target into
cache
mov rax,[k addr] <—— Guessed address
add rax, 1
mov rbx,[rax + ¥———  Time to validate
guess

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.



Speculative Execution: Tomasulo .

L1 Data
Cache

Reorder Commit syscall
[ ] Buffer

mov rax,[k_addr]
add rax, 1

mov rbx,[rax + addr ]

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.
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L1 Data
Cache

Reorder syscall
[ ] Buffer

mov rax, [k _addr]
add rax, 1

mov rbx,[rax + addr ]

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.



Speculative Execution: Tomasulo .

L1 Data
Cache

Reorder syscall
[ ] Buffer

mov rax, [k _addr]
add rax, 1

mov rbx,[rax + addr ]

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.



Speculative Execution: Tomasulo .
L1 Data
Cache

Reorder syscall
[ ] Buffer

mov rax, [k _addr]
add rax, 1

mov rbx,[rax + addr ]

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.
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Speculative Execution Sl

Test target: Intel Broadwell CPU

- While goal k_addr value might not be given directly
- Use cache side channel to verify result or not
- Failed on this target, but...
- Does process illegal read from k_addr (!)
- Does not copy value into reorder buffer :<
- Loads from data cache during speculative execution
- Speculative execution & data loads do occur after violation of kernel/user read
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Speculative Execution Sl

Test target: Intel Broadwell CPU

- While goal k_addr value might not be given directly
- Use cache side channel to verify result or not
- Failed on this target, but...
- Does process illegal read from k_addr (!)
- Does not copy value into reorder buffer :<
- Loads from data cache during speculative execution
- Speculative execution & data loads do occur after violation of kernel/user read

To be continued....
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Any Questions?

IRC: quend
email: sophia@trailofbits.com
website: www.sophia.re

63



