
1

The Bad
Neighbor

Sophia d’Antoine
November 7th, 2017

Out-of-Order Execution and Its
Applications

2

whoami
Masters in CS from RPI

- Exploiting Intel’s CPU pipelines

Work at Trail of Bits
- Senior Security Researcher
- Program Analysis / Ethereum Smart

Contracts

DEFCON (CTF), CSAW

Stats
- 12 Conferences Worldwide
- 3 Program Committees
- 2 Security Panels
- 1 Paper Published
- 1 Keynote

3

Side Channels
Hardware Side Channels in Virtualized

Environments

4

What are side channel attacks?

- Attacker can observe the target system. Must be
‘neighboring’ or co-located.

- Ability to repeatedly query the system for leaked artifacts.

- Artifacts: changes in how a process interacts with the
computer

5

Variety of Side Channels

Diferent target systems implies diferent methods for observing.
- Fault attacks

- Requires access to the hardware.

- Simple power analysis
- Requires proximity to the system.
- Power consumption measurement mapped to behavior.

- Diferent power analysis
- Requires proximity to the system.
- Statistics and error correction gathered over time.

- Timing attacks
- Requires same process co-location.
- Network packet delivery, cache misses, resource contention.

6

Information gained through
recordable
changes in the system

RSA
Implementation:
The Black Box

t = n

P > T

Powered sampled at
even intervals across
time.

7

Side Channel Checklist

- Transmitter
- Deterministic cause and efect.

- Receiver
- Record changes in environment

without altering its readings

- Medium
- Shared environment
- Accountable sources of noise

“Transmitt
er”
leak

artifacts

“Receiver
”

measure
artifacts

Shared Environment

Target Malicious actor

8

Targeting Hardware
The Hidden Attack Surface

9

Communication Between Processes
Using Hardware

Hardware

Malicious
Transmitter

Malicious
Receiver

10

Available Hardware
Shared environment on computers, accessible from software
processes. Hardware resources shared between processes.

- Processors (CPU/ GPU)
- Cache Tiers
- System Buses
- Main Memory
- Hard Disk Drive

11

Side Channel Attacks Over Hardware
Physical co-location leads to side channel
vulnerabilities.

- Processes share hardware resources
- Dynamic translation based on need
- Allocation causes contention

12

Cloud Computing (IaaS)
Perfect environment for hardware based side
channels:

- Virtual instances
- Hypervisor schedules resources

between all processors on a server

Dynamic allocation
- Reduces cost

13

Vulnerable Scenarios in the Cloud
- Sensitive data stored remotely
- Vulnerable host
- Untrusted host
- Co-located with a foreign VM

14

Building A Novel Attack
A Side Channel Recipe

15

Cloud Computing Side Channel
Scenarios
Shared hardware
Dynamically allocated hardware resources
Co-Location with adversarial VMs, infected VMs, or Processes

VM
P

VM VM
P

H

VM
P

VM
P

H

PP

16

Cloud Computing Side Channel -
Primitives
Medium: Shared artifact from a hardware unit
”Privilege Separation”: Virtual Machine or process
Method: Information gained through recordable changes in the system
Vulnerability: Translation between physical and virtual, dynamic!

First Ingredient: Hardware Medium

Choose Medium: Measure shared hardware unit’s changes over time

- Cache

- Processor

- System Bus

- Main Memory

- HDD

Second Ingredient: Measuring
Device
Choose Vulnerability: Measure artifact of shared
resource.

- Timing attacks (usually best choice)

- Cache misses, stored value farther away in
memory

- Value Errors

- Computation returns unexpected result

- Resource contention

- Locking the memory bus

- Other measurements recordable from inside a
process, in a VM

Third Ingredient: Attack Model

Choose S/R Model: What processes are involved in creating the channel depend on intended
use cases.

- Transmit only

- Application: DoS Attack

- Sender only

- Record only

- Application: Crypto key theft

- Receiver only

- Bi-way

- Application: Communication channel

- Sender and Receiver

That’s a
10

Some channels are easier than
others….
Case Study 1: Locking the memory bus

- Pro: efcient, no noise, good bandwidth

- Con: highly noticeable

Case Study 2: Everyone loves Cache.

- Pro: hardware medium is ‘static’

- Con: most common, mitigations are quickly developed

Some channels are easier than
others….
Technical Difculties:

● Querying the specifc hardware unit
● Difculty/ reliability unique to each hardware unit
● Number of repeated measurements possible
● Frequency of measurements allowed

Measuring Devices for Hardware
Mediums

Some Example Hardware Side
Channels

Medium Transmission Reception Constraints

L1 Cache Prime Probe Timing
Need to Share

Processor Space

L2 Cache Prime Probe/ Preemption Timing
Caches Missing Causes

Noise

Main Memory SMT Paging
Measure Address

Space
Peripheral Threads

Create Noise

Memory Bus Lock & Unlock Memory Bus Measure Access
Halts all Processes
Requiring the Bus

CPU Functional
Units Resource Eviction & Usage Timing

mo' Threads, mo'
Problems

Hard drive
Hard Disc Contention -
Access Files Frantically Timing

Dependent on multiple
readings of files

A Novel Attack

1) Medium:
CPU Pipeline Optimization

2) Vulnerability:
Erroneous Values. Computation returns unexpected result (SMT optimizations).

3) Model:
Develop both a sender and receiver

General setup: Cross VM or Process.

25

CPU Optimizations
Uses of Out-Of-Order Execution

A Novel Attack

Side Channel exploiting the pipeline’s common optimization of re-ordering instructions.

- Regardless of process ownership
- Some re-ordering fails and computation result changes

Receiver: Measuring OoOE

store
[X], 1

load r1,
[Y]

store
[Y], 1

load r2,
[X]

THREAD 1 THREAD 2

Synche
d

=>r1 = r2 =
1

store
[X], 1

load r1,
[Y]

store
[Y], 1

load r2,
[X]

Asynch
ed =>r1 = 0 r2

= 1
load r1,
[Y]

store
[X], 1

load r2,
[X]

store
[Y], 1

Out of
Order
Executi
on

=>r1 = r2 =
0

Receiver: Measuring OoOE

int X,Y,count_OoOE;

….initialize semaphores Sema1 & Sema2…

pthread_t thread1, thread2;

pthread_create(&threadN, NULL, threadNFunc, NULL);

for (int iterations = 1; ; iterations++)

 X,Y = 0;

 sem_post(beginSema1 & beginSema2);

 sem_wait(endSema1 & endSema2);

 if (r1 == 0 && r2 == 0)

 count_OoOE ++;

Sender: Transmit OoOE

Force Deterministic Memory Reordering:

- Compile-time vs Runtime Reordering

Runtime:

- Usually strong memory model: x86/64 (mostly sequentially consistent)

- Weaker models (data dependency re-ordering): arm, powerpc

Barriers:

- 4 types of run time reordering barriers

Sender: Transmit OoOE

Memory Fences

Mfence:
- x86 instruction full memory barrier
- prevents memory reordering of

any kind
- order of 100 cycles per operation
- lock-free programming on SMT

multiprocessors

Sender: Transmit OoOE

mfence (x86)
#StoreLoad unique prevents r1=r2=0

Testing: Hardware Architectures

Lab Setup:
- Intel’s Core Duo, Xeon Architecture
- Each processor has two cores
- The Xen hypervisor schedules between all processors on a server
- Each core then allocates processes on its pipeline

Notes:
- Multiple processes run on a single pipeline (SMT)
- Relaxed memory model

Testing: Setup

VM1 VM2 VM3 VM4 VM5 VM6

CPU1

P1 P2 P3 P4

CPU1

6 Windows 7 VM’s

Testing: Setup

VM1 VM2 VM3 VM4 VM5 VM6

CPU1

P1 P2 P3 P4

CPU1

6 Windows 7 VM’s

S/R S/R S/R S/R

VM
V
M

VM VM

Processor

Core01 Core02SMT
Optimizes
Shared
Hardware

Pipeline
Executing

Instructions
From Foreign
Applications

Testing: Results

Sending signal: 001000.

0 0 0 0 0

1

Testing: Results

Benefts:

- Harder for a intelligent hypervisor to detect, quiet

- Eavesdropping sufciently mutilates channel

- System artifacts sent and queried dynamically

- Not afected by cache misses

- Channel amplifed with system noise

- Immediately useful for malware, leaking system behavior, environmental keying,
algorithm identifcation

More Info: https://www.sophia.re/SC

38

Defenses

Defensive Mechanisms: Hardware

Protected Resource Ownership:

- Isolating VM’s

- Turn of hyperthreading

- Blacklisting resources for concurrent
threads

- Downside: removes optimizations or
benefts of the cloud

Defensive Mechanisms: Hypervisor

Anomaly detection:

- Specifcation

- Pattern recognition

- Records average OoOE patterns

- Predicts what to expect

Defensive Mechanisms: Software

Control Flow Changes:

- Hardening software with Noise

- Force specifc execution patterns (i.e.
constant time loops, ...)

- Avoid using certain resources

- Downside: compiler, hardware
optimizations lost

Virtualization Considerations

Side Channel Potential:

- More resource sharing

- More dynamic optimizations

- Virtualization more popular

- Malware

Things to Consider:

- Cloud Side Channels apply to anything with virtualization (i.e. VM’s)

- Hypervisors are easy targets: Vulnerable host

i.e. “Xenpwn”, paravirtualized driver attack: INFILTRATECon 2016

43

The Future

Optimizations!

Optimizations!

Optimizations!

- Processor Register and Functional Unit
- Out-Of-Order Execution
- Speculative Execution
- Branch Prediction
- 1 Pipeline, multiple execution units

- i.e. Integer ALU and FPU (adder, multiplier and divider) share a pipeline
- Data cache pseudo-dual ported via interleaving
- “ Long latency operations can proceed in parallel with short latency operations.”

Optimizations!

- Processor Register and Functional Unit
- Out-Of-Order Execution
- Speculative Execution
- Branch Prediction
- 1 Pipeline, multiple execution units

- i.e. Integer ALU and FPU (adder, multiplier and divider) share a pipeline
- Data cache pseudo-dual ported via interleaving
- “ Long latency operations can proceed in parallel with short latency operations.”

Optimizations!

L1 Data Cache Loads can:

- Read data before preceding stores when the load address and store address ranges
are known not to
Confict.

- Be carried out speculatively, before preceding branches are resolved.
- Take cache misses out of order and in an overlapped manner.

Optimizations!

Speculative Execution

Speculative Execution

mov rax,[addr_0]

mov rbx,[addr_1]

Speculative Execution

mov rax,[addr_0]

add rax, 1

mov rbx,[rax + addr_1]

Speculative Execution

mov rax,[addr_0]

add rax, 1

mov rbx,[rax + addr_1] Time Memory Load

Speculative Execution

Uses: Arbitrary Kernel Memory Leak!

mov rax,[k_addr]

- Interrupt occurs
- Undefned behavior

- Timing of fnished instruction execution and actual retirement
- mov potentially sets the results in the reorder bufer

Goal: Speculatively execute instructions after mov, based on reorder bufer value.

Speculative Execution

syscall

mov rax,[k_addr]

add rax, 1

mov rbx,[rax + addr_1]

Guessed address

Time to validate
guess

Force target into
cache

Speculative Execution: Tomasulo
algorithm

L1 Data
Cache

u_val

u_val

Reorder
Buffer

Commit syscall

mov rax,[k_addr]

add rax, 1

mov rbx,[rax + addr_1]

[k_addr]

Speculative Execution: Tomasulo
algorithm

L1 Data
Cache Reorder

Buffer
Commit syscall

mov rax,[k_addr]

add rax, 1

mov rbx,[rax + addr_1]
k_val INT!

u_val

u_val

[k_addr]

Speculative Execution: Tomasulo
algorithm

L1 Data
Cache

[k_addr]
Reorder
Buffer

Commit syscall

mov rax,[k_addr]

add rax, 1

mov rbx,[rax + addr_1]
k_val INT!

u_val

u_val

u_addr
[k_val+1]

k_val + 1

value

Speculative Execution: Tomasulo
algorithm

L1 Data
Cache

[k_addr]
Reorder
Buffer

Commit syscall

mov rax,[k_addr]

add rax, 1

mov rbx,[rax + addr_1]
k_val INT!

u_val

u_val

u_addr
[k_val+1]

k_val + 1

value

time!

Speculative Execution

Test target: Intel Broadwell CPU

- While goal k_addr value might not be given directly
- Use cache side channel to verify result or not
- Failed on this target, but...

- Does process illegal read from k_addr (!)
- Does not copy value into reorder bufer :<
- Loads from data cache during speculative execution
- Speculative execution & data loads do occur after violation of kernel/user read

Speculative Execution

Test target: Intel Broadwell CPU

- While goal k_addr value might not be given directly
- Use cache side channel to verify result or not
- Failed on this target, but...

- Does process illegal read from k_addr (!)
- Does not copy value into reorder bufer :<
- Loads from data cache during speculative execution
- Speculative execution & data loads do occur after violation of kernel/user read

To be continued….

Acknowledgements

co-author: Jeremy Blackthorne
advisor: Bulent Yener

Trail of Bits
Ryan Stortz, Jef Preshing, Anders Fogh

https://www.sophia.re/SC

http://preshing.com/20120515/memory-reordering-caught-in-the-act/

http://blog.stufedcow.net/2014/01/x86-memory-disambiguation/

https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

https://www.sophia.re/SC
https://www.sophia.re/SC
http://preshing.com/20120515/memory-reordering-caught-in-the-act/
http://blog.stuffedcow.net/2014/01/x86-memory-disambiguation/
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.sophia.re/SC
https://www.sophia.re/SC
http://preshing.com/20120515/memory-reordering-caught-in-the-act/
http://blog.stuffedcow.net/2014/01/x86-memory-disambiguation/
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

63

Any Questions?

IRC: quend
email: sophia@trailofbits.com
website: www.sophia.re

mailto:sophia@trailofbits.com
mailto:sophia@trailofbits.com

1

The Bad
Neighbor

Sophia d’Antoine
November 7th, 2017

Out-of-Order Execution and Its
Applications

2

whoami
Masters in CS from RPI

- Exploiting Intel’s CPU pipelines

Work at Trail of Bits
- Senior Security Researcher
- Program Analysis / Ethereum Smart

Contracts

DEFCON (CTF), CSAW

Stats
- 12 Conferences Worldwide
- 3 Program Committees
- 2 Security Panels
- 1 Paper Published
- 1 Keynote

Blackhat, HITB, RECon, Cansecwest. Mention CTF got into it. DEFCON CTF
Program analysis work automation, etc. Cyber Transition Team?

3

Side Channels
Hardware Side Channels in Virtualized

Environments

4

What are side channel attacks?

- Attacker can observe the target system. Must be
‘neighboring’ or co-located.

- Ability to repeatedly query the system for leaked artifacts.

- Artifacts: changes in how a process interacts with the
computer

5

Variety of Side Channels

Diferent target systems implies diferent methods for observing.
- Fault attacks

- Requires access to the hardware.

- Simple power analysis
- Requires proximity to the system.
- Power consumption measurement mapped to behavior.

- Diferent power analysis
- Requires proximity to the system.
- Statistics and error correction gathered over time.

- Timing attacks
- Requires same process co-location.
- Network packet delivery, cache misses, resource contention.

Crypto stuff

6

Information gained through
recordable
changes in the system

RSA
Implementation:
The Black Box

t = n

P > T

Powered sampled at
even intervals across
time.

7

Side Channel Checklist

- Transmitter
- Deterministic cause and efect.

- Receiver
- Record changes in environment

without altering its readings

- Medium
- Shared environment
- Accountable sources of noise

“Transmitt
er”
leak

artifacts

“Receiver
”

measure
artifacts

Shared Environment

Target Malicious actor

Software AND Hardware both

8

Targeting Hardware
The Hidden Attack Surface

9

Communication Between Processes
Using Hardware

Hardware

Malicious
Transmitter

Malicious
Receiver

Software AND Hardware both

10

Available Hardware
Shared environment on computers, accessible from software
processes. Hardware resources shared between processes.

- Processors (CPU/ GPU)
- Cache Tiers
- System Buses
- Main Memory
- Hard Disk Drive

Software AND Hardware both

11

Side Channel Attacks Over Hardware
Physical co-location leads to side channel
vulnerabilities.

- Processes share hardware resources
- Dynamic translation based on need
- Allocation causes contention

Software AND Hardware both

12

Cloud Computing (IaaS)
Perfect environment for hardware based side
channels:

- Virtual instances
- Hypervisor schedules resources

between all processors on a server

Dynamic allocation
- Reduces cost

Software AND Hardware both

13

Vulnerable Scenarios in the Cloud
- Sensitive data stored remotely
- Vulnerable host
- Untrusted host
- Co-located with a foreign VM

Software AND Hardware both

14

Building A Novel Attack
A Side Channel Recipe

15

Cloud Computing Side Channel
Scenarios
Shared hardware
Dynamically allocated hardware resources
Co-Location with adversarial VMs, infected VMs, or Processes

VM
P

VM VM
P

H

VM
P

VM
P

H

PP

Software AND Hardware both

16

Cloud Computing Side Channel -
Primitives
Medium: Shared artifact from a hardware unit
”Privilege Separation”: Virtual Machine or process
Method: Information gained through recordable changes in the system
Vulnerability: Translation between physical and virtual, dynamic!

Software AND Hardware both

First Ingredient: Hardware Medium

Choose Medium: Measure shared hardware unit’s changes over time

- Cache

- Processor

- System Bus

- Main Memory

- HDD

Software AND Hardware both

Second Ingredient: Measuring
Device
Choose Vulnerability: Measure artifact of shared
resource.

- Timing attacks (usually best choice)

- Cache misses, stored value farther away in
memory

- Value Errors

- Computation returns unexpected result

- Resource contention

- Locking the memory bus

- Other measurements recordable from inside a
process, in a VM

Software AND Hardware both

Third Ingredient: Attack Model

Choose S/R Model: What processes are involved in creating the channel depend on intended
use cases.

- Transmit only

- Application: DoS Attack

- Sender only

- Record only

- Application: Crypto key theft

- Receiver only

- Bi-way

- Application: Communication channel

- Sender and Receiver

That’s a
10

Software AND Hardware both

Some channels are easier than
others….
Case Study 1: Locking the memory bus

- Pro: efcient, no noise, good bandwidth

- Con: highly noticeable

Case Study 2: Everyone loves Cache.

- Pro: hardware medium is ‘static’

- Con: most common, mitigations are quickly developed

Software AND Hardware both

Some channels are easier than
others….
Technical Difculties:

● Querying the specifc hardware unit
● Difculty/ reliability unique to each hardware unit
● Number of repeated measurements possible
● Frequency of measurements allowed

Software AND Hardware both

Measuring Devices for Hardware
Mediums

Software AND Hardware both

Some Example Hardware Side
Channels

Medium Transmission Reception Constraints

L1 Cache Prime Probe Timing
Need to Share

Processor Space

L2 Cache Prime Probe/ Preemption Timing
Caches Missing Causes

Noise

Main Memory SMT Paging
Measure Address

Space
Peripheral Threads

Create Noise

Memory Bus Lock & Unlock Memory Bus Measure Access
Halts all Processes
Requiring the Bus

CPU Functional
Units Resource Eviction & Usage Timing

mo' Threads, mo'
Problems

Hard drive
Hard Disc Contention -
Access Files Frantically Timing

Dependent on multiple
readings of files

See how they all follow the recipe. Existing work. Abstraction is KEY!

A Novel Attack

1) Medium:
CPU Pipeline Optimization

2) Vulnerability:
Erroneous Values. Computation returns unexpected result (SMT optimizations).

3) Model:
Develop both a sender and receiver

General setup: Cross VM or Process.

Smt optimizations are key for this pipeline attack. Optimizations are a great
vulnerability in general.

25

CPU Optimizations
Uses of Out-Of-Order Execution

A Novel Attack

Side Channel exploiting the pipeline’s common optimization of re-ordering instructions.

- Regardless of process ownership
- Some re-ordering fails and computation result changes

Smt optimizations are key for this pipeline attack. Optimizations are a great
vulnerability in general.

Receiver: Measuring OoOE

Smt optimizations are key for this pipeline attack. Optimizations are a great
vulnerability in general.

store
[X], 1

load r1,
[Y]

store
[Y], 1

load r2,
[X]

THREAD 1 THREAD 2

Synche
d

=>r1 = r2 =
1

store
[X], 1

load r1,
[Y]

store
[Y], 1

load r2,
[X]

Asynch
ed =>r1 = 0 r2

= 1
load r1,
[Y]

store
[X], 1

load r2,
[X]

store
[Y], 1

Out of
Order
Executi
on

=>r1 = r2 =
0

Receiver: Measuring OoOE

int X,Y,count_OoOE;

….initialize semaphores Sema1 & Sema2…

pthread_t thread1, thread2;

pthread_create(&threadN, NULL, threadNFunc, NULL);

for (int iterations = 1; ; iterations++)

 X,Y = 0;

 sem_post(beginSema1 & beginSema2);

 sem_wait(endSema1 & endSema2);

 if (r1 == 0 && r2 == 0)

 count_OoOE ++;

Smt optimizations are key for this pipeline attack. Optimizations are a great
vulnerability in general.

Sender: Transmit OoOE

Force Deterministic Memory Reordering:

- Compile-time vs Runtime Reordering

Runtime:

- Usually strong memory model: x86/64 (mostly sequentially consistent)

- Weaker models (data dependency re-ordering): arm, powerpc

Barriers:

- 4 types of run time reordering barriers

- #StoreLoad most expensive

Sender: Transmit OoOE

Memory Fences

Mfence:
- x86 instruction full memory barrier
- prevents memory reordering of

any kind
- order of 100 cycles per operation
- lock-free programming on SMT

multiprocessors

2 types of memory reordering, GCC
Multithreaded
Programs
Or pipeline type

Sender: Transmit OoOE

mfence (x86)
#StoreLoad unique prevents r1=r2=0

2 types of memory reordering, GCC
Multithreaded
Programs
Or pipeline type

Testing: Hardware Architectures

Lab Setup:
- Intel’s Core Duo, Xeon Architecture
- Each processor has two cores
- The Xen hypervisor schedules between all processors on a server
- Each core then allocates processes on its pipeline

Notes:
- Multiple processes run on a single pipeline (SMT)
- Relaxed memory model

2 types of memory reordering, GCC
Multithreaded
Programs
Or pipeline type

Testing: Setup

VM1 VM2 VM3 VM4 VM5 VM6

CPU1

P1 P2 P3 P4

CPU1

6 Windows 7 VM’s

2 types of memory reordering, GCC
Multithreaded
Programs
Or pipeline type

Testing: Setup

VM1 VM2 VM3 VM4 VM5 VM6

CPU1

P1 P2 P3 P4

CPU1

6 Windows 7 VM’s

S/R S/R S/R S/R

VM
V
M

VM VM

Processor

Core01 Core02SMT
Optimizes
Shared
Hardware

Pipeline
Executing

Instructions
From Foreign
Applications

2 types of memory reordering, GCC
Multithreaded
Programs
Or pipeline type

Testing: Results

Sending signal: 001000.

0 0 0 0 0

1

Process changes signature of queried hardware unit
over time

MALWARE USES ETC

Testing: Results

Benefts:

- Harder for a intelligent hypervisor to detect, quiet

- Eavesdropping sufciently mutilates channel

- System artifacts sent and queried dynamically

- Not afected by cache misses

- Channel amplifed with system noise

- Immediately useful for malware, leaking system behavior, environmental keying,
algorithm identifcation

More Info: https://www.sophia.re/SC

38

Defenses

Defensive Mechanisms: Hardware

Protected Resource Ownership:

- Isolating VM’s

- Turn of hyperthreading

- Blacklisting resources for concurrent
threads

- Downside: removes optimizations or
benefts of the cloud

Defensive Mechanisms: Hypervisor

Anomaly detection:

- Specifcation

- Pattern recognition

- Records average OoOE patterns

- Predicts what to expect

Defensive Mechanisms: Software

Control Flow Changes:

- Hardening software with Noise

- Force specifc execution patterns (i.e.
constant time loops, ...)

- Avoid using certain resources

- Downside: compiler, hardware
optimizations lost

Virtualization Considerations

Side Channel Potential:

- More resource sharing

- More dynamic optimizations

- Virtualization more popular

- Malware

Things to Consider:

- Cloud Side Channels apply to anything with virtualization (i.e. VM’s)

- Hypervisors are easy targets: Vulnerable host

i.e. “Xenpwn”, paravirtualized driver attack: INFILTRATECon 2016

43

The Future

Optimizations!

Optimizations!

Optimizations!

- Processor Register and Functional Unit
- Out-Of-Order Execution
- Speculative Execution
- Branch Prediction
- 1 Pipeline, multiple execution units

- i.e. Integer ALU and FPU (adder, multiplier and divider) share a pipeline
- Data cache pseudo-dual ported via interleaving
- “ Long latency operations can proceed in parallel with short latency operations.”

Optimizations!

- Processor Register and Functional Unit
- Out-Of-Order Execution
- Speculative Execution
- Branch Prediction
- 1 Pipeline, multiple execution units

- i.e. Integer ALU and FPU (adder, multiplier and divider) share a pipeline
- Data cache pseudo-dual ported via interleaving
- “ Long latency operations can proceed in parallel with short latency operations.”

Optimizations!

L1 Data Cache Loads can:

- Read data before preceding stores when the load address and store address ranges
are known not to
Confict.

- Be carried out speculatively, before preceding branches are resolved.
- Take cache misses out of order and in an overlapped manner.

Optimizations!

Speculative Execution

Speculative Execution

mov rax,[addr_0]

mov rbx,[addr_1]

Speculative Execution

mov rax,[addr_0]

add rax, 1

mov rbx,[rax + addr_1]

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.

Speculative Execution

mov rax,[addr_0]

add rax, 1

mov rbx,[rax + addr_1] Time Memory Load

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.

Speculative Execution

Uses: Arbitrary Kernel Memory Leak!

mov rax,[k_addr]

- Interrupt occurs
- Undefned behavior

- Timing of fnished instruction execution and actual retirement
- mov potentially sets the results in the reorder bufer

Goal: Speculatively execute instructions after mov, based on reorder bufer value.

Speculative Execution

syscall

mov rax,[k_addr]

add rax, 1

mov rbx,[rax + addr_1]

Guessed address

Time to validate
guess

Force target into
cache

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.

Speculative Execution: Tomasulo
algorithm

L1 Data
Cache

u_val

u_val

Reorder
Buffer

Commit syscall

mov rax,[k_addr]

add rax, 1

mov rbx,[rax + addr_1]

[k_addr]

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.

Speculative Execution: Tomasulo
algorithm

L1 Data
Cache Reorder

Buffer
Commit syscall

mov rax,[k_addr]

add rax, 1

mov rbx,[rax + addr_1]
k_val INT!

u_val

u_val

[k_addr]

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.

Speculative Execution: Tomasulo
algorithm

L1 Data
Cache

[k_addr]
Reorder
Buffer

Commit syscall

mov rax,[k_addr]

add rax, 1

mov rbx,[rax + addr_1]
k_val INT!

u_val

u_val

u_addr
[k_val+1]

k_val + 1

value

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.

Speculative Execution: Tomasulo
algorithm

L1 Data
Cache

[k_addr]
Reorder
Buffer

Commit syscall

mov rax,[k_addr]

add rax, 1

mov rbx,[rax + addr_1]
k_val INT!

u_val

u_val

u_addr
[k_val+1]

k_val + 1

value

time!

However, the second instruction will also execute speculatively and it may change
the microarchitectural state of the CPU in a way that we can detect it. In this
particular case the second mov instruction will load the someusermodeaddress
into the cache hierarchy and we will be able to observe faster access time after
structured exception handling took care of the exception.

Speculative Execution

Test target: Intel Broadwell CPU

- While goal k_addr value might not be given directly
- Use cache side channel to verify result or not
- Failed on this target, but...

- Does process illegal read from k_addr (!)
- Does not copy value into reorder bufer :<
- Loads from data cache during speculative execution
- Speculative execution & data loads do occur after violation of kernel/user read

Speculative Execution

Test target: Intel Broadwell CPU

- While goal k_addr value might not be given directly
- Use cache side channel to verify result or not
- Failed on this target, but...

- Does process illegal read from k_addr (!)
- Does not copy value into reorder bufer :<
- Loads from data cache during speculative execution
- Speculative execution & data loads do occur after violation of kernel/user read

To be continued….

Acknowledgements

co-author: Jeremy Blackthorne
advisor: Bulent Yener

Trail of Bits
Ryan Stortz, Jef Preshing, Anders Fogh

https://www.sophia.re/SC

http://preshing.com/20120515/memory-reordering-caught-in-the-act/

http://blog.stufedcow.net/2014/01/x86-memory-disambiguation/

https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

63

Any Questions?

IRC: quend
email: sophia@trailofbits.com
website: www.sophia.re

