OFF-PATH ATTACKS AGAINST PKI

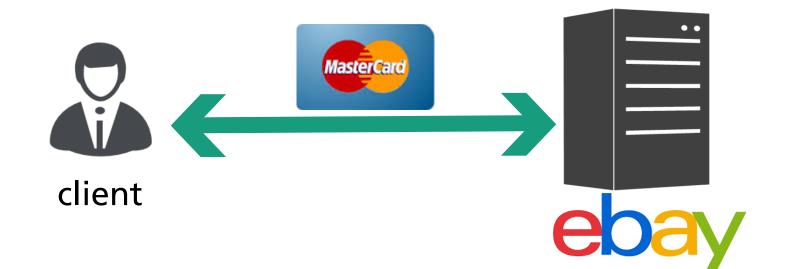
Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, Michael Waidner

WHO AM I?

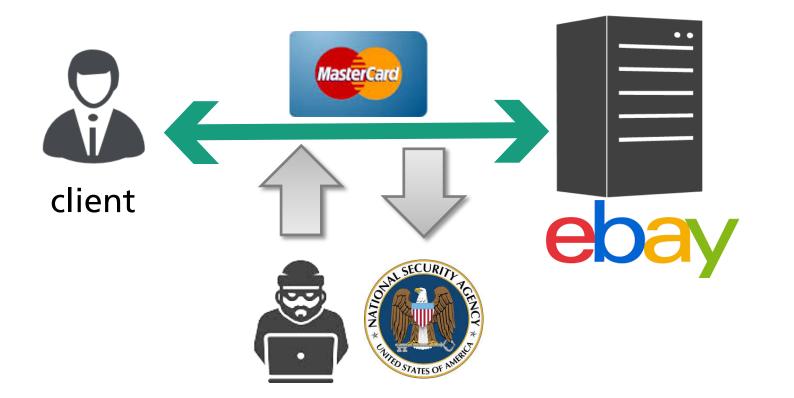
Security Researcher

- Technische Universität Darmstadt
- Fraunhofer-Institut f
 ür Sichere Informationstechnologie
- Freelancer
- Teaching IT Security at TU Darmstadt
- Special interest:
 - Network Security
 - Crypto
 - Reverse engineering

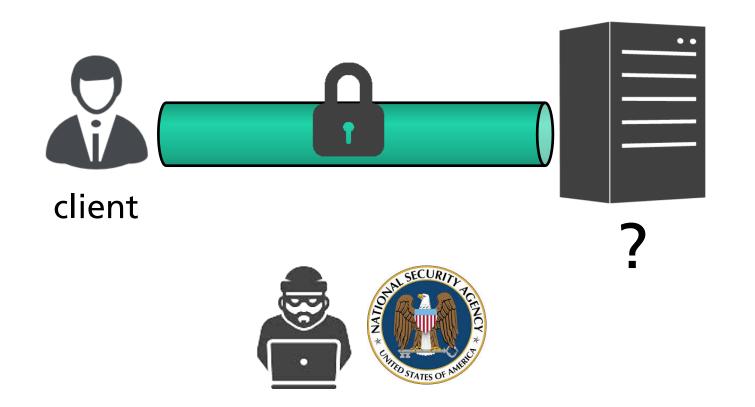
OUTLINE


- Public-Key Infrastructures
- Domain Validation
- Off-Path attack against Domain Validation
- Defences
- Conclusion

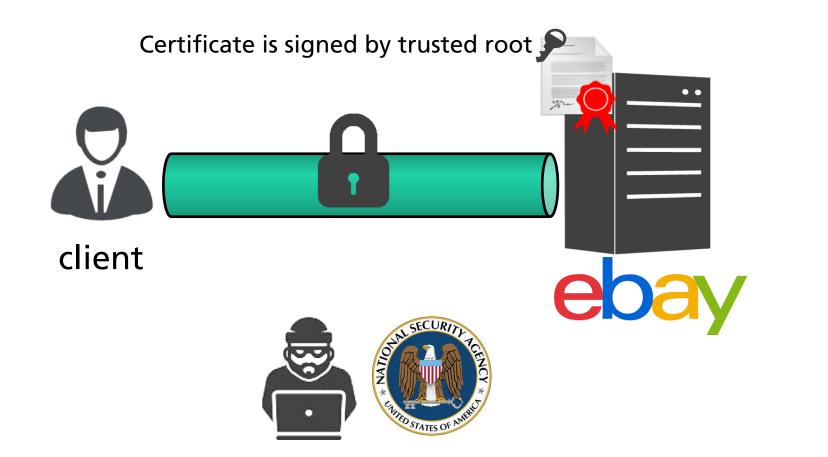
PUBLIC-KEY INFRASTRUCTURES



LET'S START WITH A SIMPLE EXAMPLE



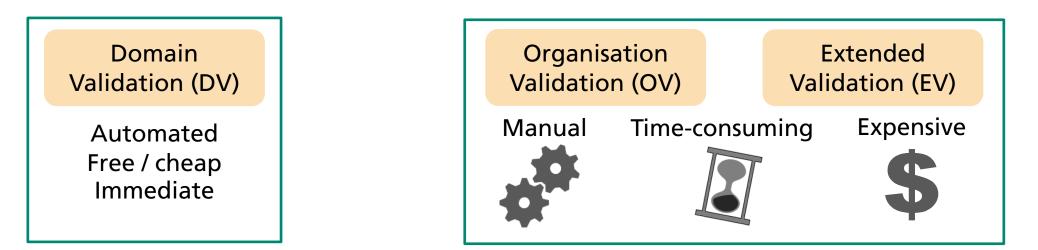
INSECURE WITHOUT ENCRYPTION



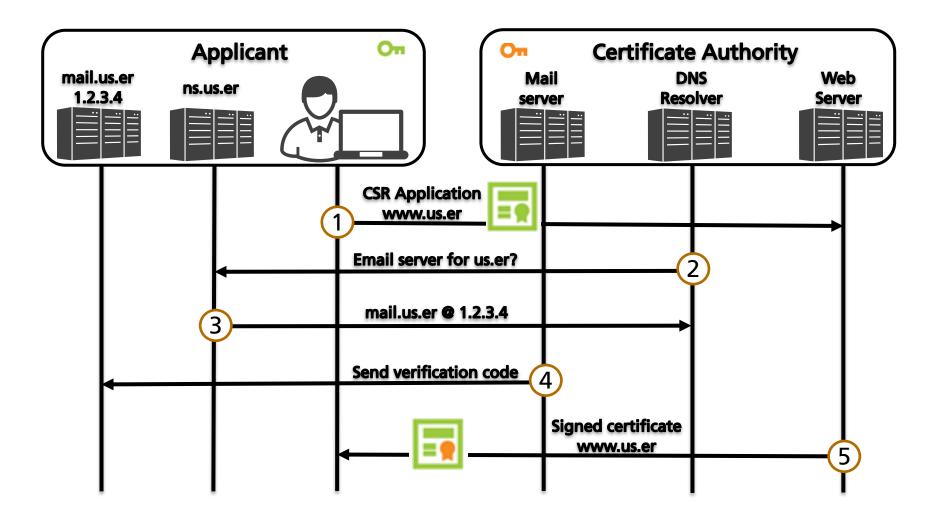
ENCRYPTION PROTECTS THE DATA

CERTIFICATES BIND CRYPTOGRAPHIC KEYS TO SUBJECTS

CERTIFICATES BIND CRYPTOGRAPHIC KEYS TO SUBJECTS

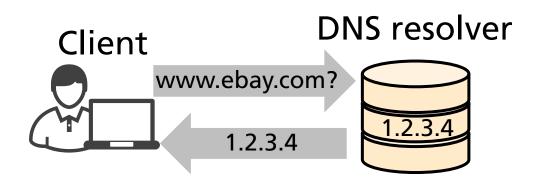


DOMAIN VALIDATION


MORE THAN 100 ROOT CA IN BROWSERS

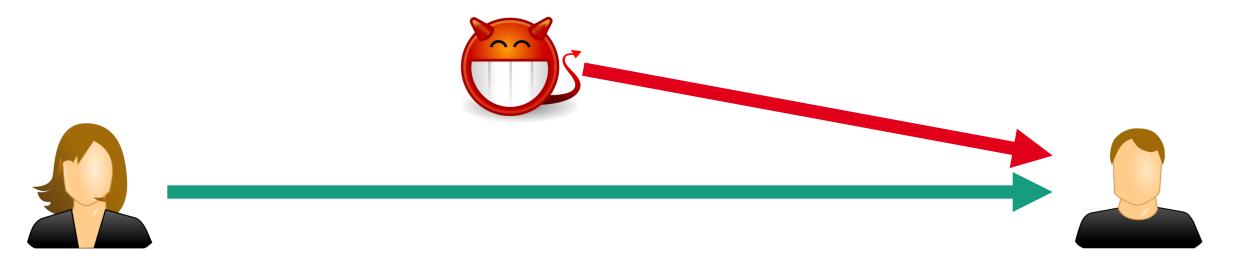
- We tested 17 CAs that perform DV
 - They control over 95% of the certificates market
- Five were vulnerable
- Only one vulnerable CA is sufficient
 - Usually it doesn't matter which CA signed it

CERTIFICATE ISSUANCE WITH DOMAIN VALIDATION



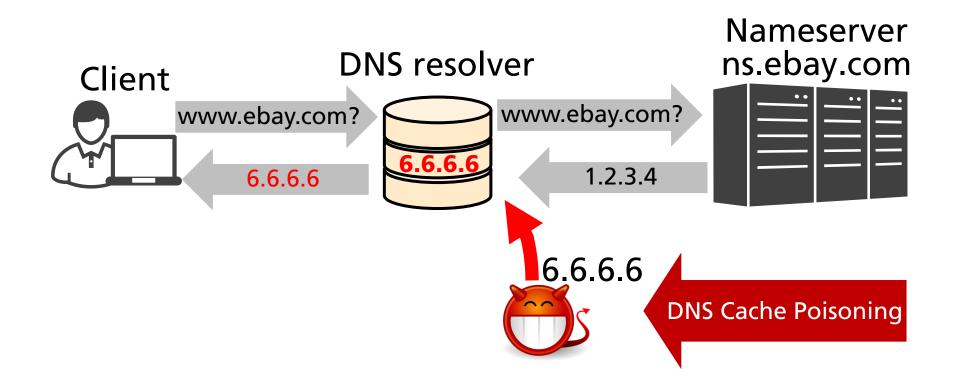
RESOLVING A DOMAIN NAME

REPLYING FROM CACHE



OFF-PATH ATTACK AGAINST DOMAIN VALIDATION

WE ASSUME THE WEAKEST ATTACKER



Off-Path (Spoofing) Attackers can:

- only inject packets
- not eavesdrop
- not modify or delay packets in any way

DNS CACHE POISONING

AGAINST OFF-PATH POISONING: CHALLENGE-RESPONSE

- Send request from random port (16 Bit)
- Select random DNS transaction ID (also 16 Bit)
 - 2³² values

\rightarrow impractical to guess!

DNS PACKET: IP HEADER

Bit	0 1 2 3	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30									
0	v4	IHL	TOS		Total Length						
32		IP Ide	ntifier	Flags	lags Fragment Offset ₁						
64	Time 7	Fo Live	Protocol		IP Header Checksum						
96	Time To Live Protocol IP Header Checksum Source IP Address										
128	Destination IP Address										

DNS PACKET: UDP HEADER

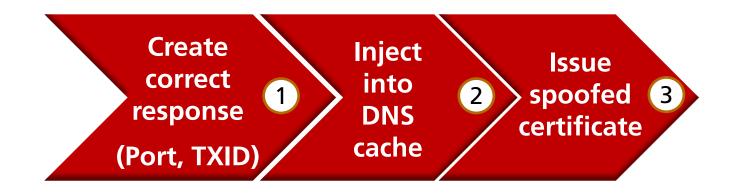
Bit	0 1 2 3	4 5 6 7	8 9 10 11 12 13 14 15	16 17 18	19 20 21 22 23 24 25 26 27 28 29 30 3	31					
0	v4	v4 IHL TOS Total Length									
32		IP Ide	ntifier	Flags	s Fragment Offset IP Header Checksum						
64	Time 1	To Live	Protocol		IP Header Checksum						
96	Source IP Address										
128	Destination IP Address										
160		Sourc	e Port	Destination Port							
192		Len	igth		UDP Checksum	UDP Header					

DNS PACKET: DNS HEADER

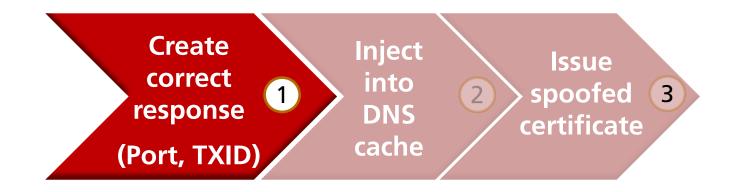
Bit	0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18	19 20 21 22 23 24 25 26 27 28 29 30	31				
0	v4 IHL	TOS	Total Length						
32	IP Ide	entifier	Flags Fragment Offset						
64	Time To Live	Protocol		IP Header Checksum	IP Header				
96		Source IF	Address	5	er				
128	Destination IP Address								
160	Sour	ce Port		Destination Port					
192	Le	ngth		UDP Checksum					
224	Transaction lo	dentifier (TXID)		DNS Flags	DNS Header				
256	Questio	on Count		Answer Record Count					
288	Authority F	Record Count		Additional Record Count	er -				

DNS PACKET: DNS PAYLOAD

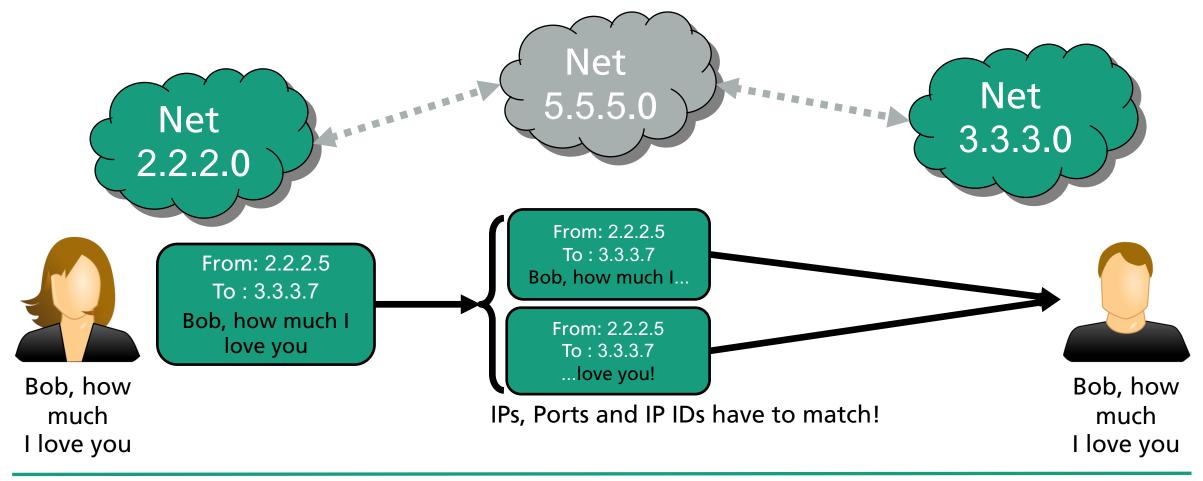
Bit	0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18	19 20 21	22 23	24	25 26	27	28 29	9 30	31	
0	v4 IHL TOS Total Length											
32	IP Ide	Flags	Fragment Offset							т		
64	Time To Live		IP H	eader	Ch	ecksu	m				IP Header	
96		Source IF	P Address	5								er
128		Destination	n IP Addr	ess								
160	Sourc	e Port		De	estinat	tior	n Port					UDP Heade
192	Length UDP Checksum									UDP Header		
224	Transaction Identifier (TXID) DNS Flags							т				
256	Question Count Answer Record Count								DNS Header			
288	Authority Record Count Additional Record Count								er -			
	Question Section											
	Answer Section Authority Section						DNS Payloa					
	Authority Section						VS oad					
	Additional Section											



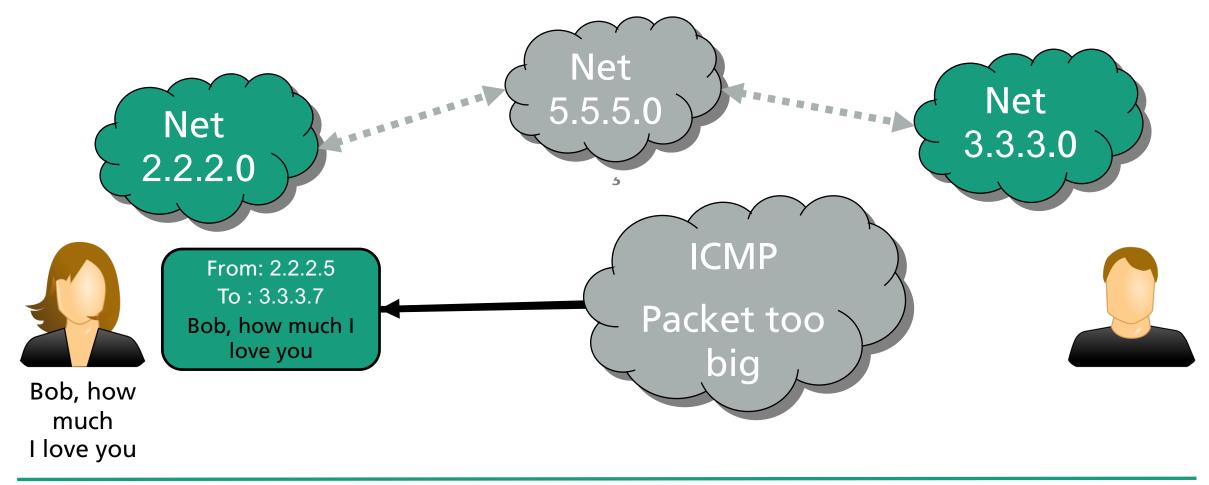
- Modify communication without seeing it and without access to it
- Overwrite cached record with incorrect value
- Exploit DNS cache poisoning to circumvent PKI authentication (and issue certificate)



GOALS



LET'S START WITH STEP 1

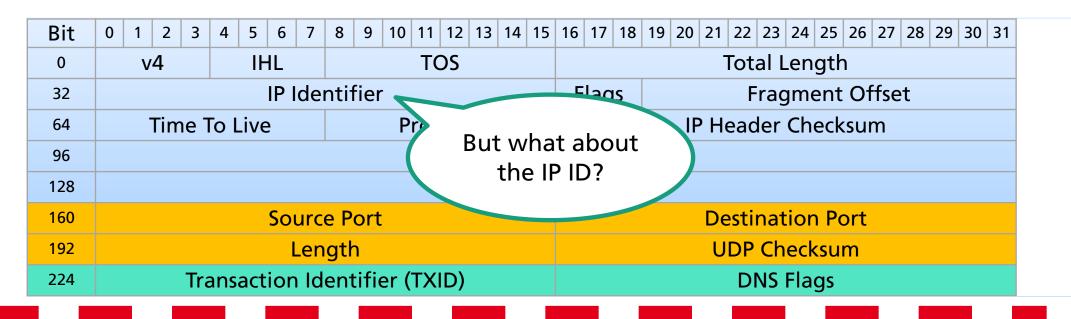


LARGE PACKETS CAN GET FRAGMENTED ON PATH

FRAGMENTATION CAN ALSO BE REQUESTED

ICMP FRAGMENTATION NEEDED AND DON'T FRAGMENT WAS SET

Bit	0 1 2 3	4 5 6 7	8 9 10 11 12 13 14 15	16 17 18	19 20 21 22 23 24 25 26 27 28 29	30 31			
0	v4	IHL	TOS	Total Length					
32		IP Ide	entifier	Flags Fragment Offset					
64	Time To Live Protocol			IP Header Checksum					
96			Source IP	Address		Header			
128			Destination	IP Addro	ess				
160	Тур	e = 3	Code = 4		ICMP Checksum	ICMP			
192		Un	used		MTU = 100	ICMP Header			
224	v4	IHL	TOS		Total Length	P			
256		IP Ide	entifier	Flags	Fragment Offset	Header			
288	Time ⁻	To Live	Protocol		IP Header Checksum	der			
320	Source IP Address								
352	Destination IP Address								
						IP Pa			
						Payload			
						ad			


FORCING FRAGMENTATION

Among 5K-top Alexa that reduce the MTU

- 33,4% allow >= 296 bytes
- 11% allow < 296 bytes
- ICMP Messages can be sent by anyone
- OSes typically do not apply any checks for UDP
 - UDP is stateless.

EXPLOITING FRAGMENTATION AGAINST DNS

256	Question Count	Answer Record Count				
288	Authority Record Count	Additional Record Count				
	Authority Record Count Additional Record Count Question Section					
	Answer Section					
	Authority Section					
	Additional Section					

RFC 791

September 1981

Internet Protocol Overview

Fragmentation

[...]

The identification field is used to distinguish the fragments of one datagram from those of another. The originating protocol module of an internet datagram <u>sets the identification field to a value</u> <u>that must be unique</u> for that source-destination pair and protocol for the time the datagram will be active in the internet system. The originating protocol module of a complete datagram sets the more-fragments flag to zero and the fragment offset to zero. [...]

HOW DO MAKE IP IDENTIFIERS UNIQUE?

RANDOM IP IDENTIFIERS

Very few servers use random IP ID values (<1%)</p>

Quite complicated

- Needs enough entropy
- Has to check for collisions

HOW DO MAKE IP IDENTIFIERS UNIQUE?

Per-Destination IP ID

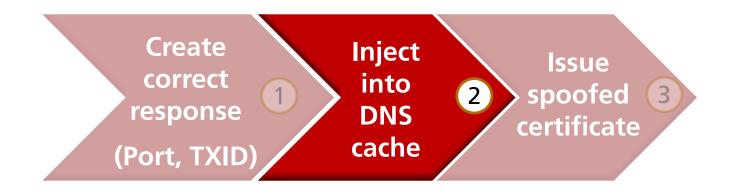
- <40% of the nameservers use a per-destination incrementing IP ID</p>
- Default in Linux
- Attacks exist [KC14]

[KC14] Jeffrey Knockel and Jedidiah R Crandall. 2014. Counting Packets Sent Between Arbitrary Internet Hosts.. In FOCI.

HOW DO MAKE IP IDENTIFIERS UNIQUE?

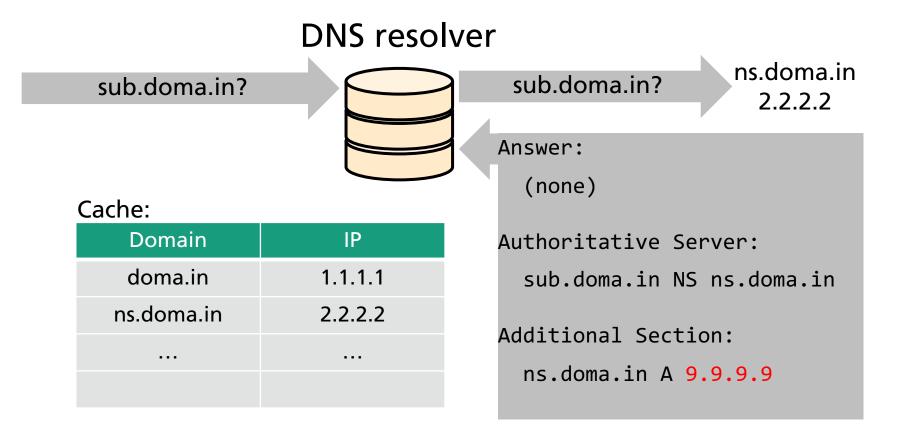
Sequentially Incrementing IP ID

- >60% of 10K-top Alexa domains use sequentially incrementing IP ID values
- Easiest to attack
- Simply estimate incremention

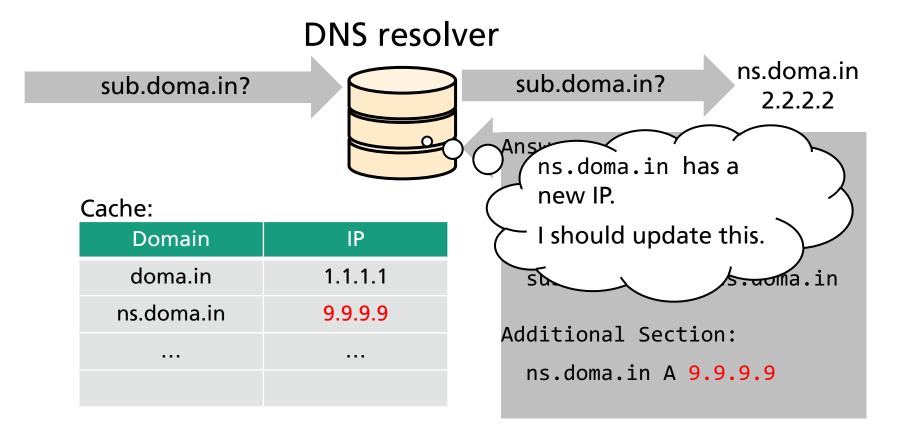


WHAT HAPPENS IF THE 2ND FRAGMENT ARRIVES FIRST?

- Operating systems keep 2nd fragment and wait for 1st fragment
 - Windows keeps 100 fragments
 - Linux keeps 64 fragments
 - Older Linux kernels allow for thousands of fragments
 - Can be set via *ip_frag_max_dist*



NOW WE WANT TO INSERT OUR ENTRY INTO THE CACHE



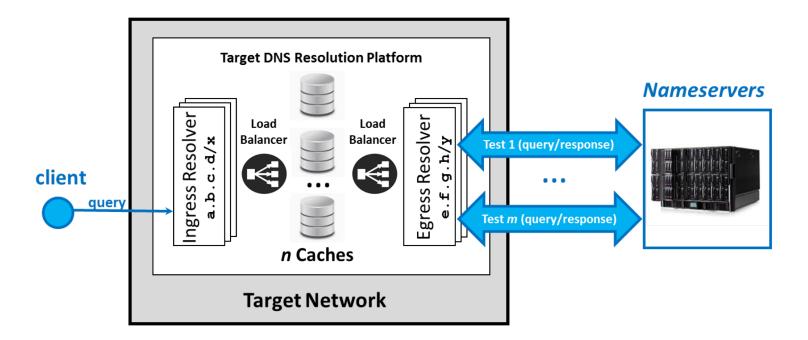
ADVANCED CACHE POISONING

ADVANCED CACHE POISONING

THIS WAS JUST ONE (VERY SIMPLE) EXAMPLE

Test Name	DNS Fields	Values in DNS Fields	Overrides Cached	Auth Ref.	Direct	Defence
1. NS0	Q An Au	A? two.test-ns0.TAIL two.test-ns0.TAIL A a.b.c.d test-ns0.TAIL NS ns2.test-ns0.TAIL	test-ns0.TAIL NS ns.test-ns0.TAIL	No	No	(A)/(B)
2. NS0-auth	Ad Q An Au	ns2.test-ns0.TAIL A ATTACKER A? two.test-ns0-auth.TAIL two.test-ns0-auth.TAIL A a.b.c.d test-ns0-auth.TAIL NS ns2.test-ns0-auth.TAIL	test-ns0-auth.TAIL NS ns.test-ns0-auth.TAIL	Yes	No	(A)/(B)
3. NS	Ad Q An Au	ns2.test-ns0-auth.TAIL A ATTACKER A? ns2.test-ns.TAIL ns2.test-ns.TAIL A ATTACKER test-ns.TAIL NS ns2.test-ns.TAIL	test-ns.TAIL NS ns.test-ns.TAIL	No	No	(A)
4. NS-auth	Ad Q An Au Ad	A? ns2.test-ns-auth.TAIL ns2.test-ns-auth.TAIL A ATTACKER test-ns-auth.TAIL NS ns2.test-ns-auth.TAIL	test-ns-auth.TAIL NS ns.test-ns-auth.TAIL	Yes	No	(A)
5. NS2	Q An Au Ad		test-ns2.TAIL NS ns.test-ns2.TAIL	No	No	(A)
6. NS2-auth	Q An Au Ad	A? two.test-ns2-auth.TAIL two.test-ns2-auth.TAIL A a.b.c.d test-ns2-auth.TAIL NS ns2.magic-ns2-auth.TAIL	test-ns2-auth.TAIL NS ns.test-ns2-auth.TAIL	Yes	No	(A)
7. b4	Au Au Au Au		ns.test-b4.TAIL A a.b.c.d	N/A	No	(B)
3. u1-auth	Q Au Au Ad	A? two.test-ul-auth.TAIL test-ul-auth.TAIL NS ns2.test-ul-auth.TAIL ns2.test-ul-auth.TAIL A ATTACKER	test-ul-auth.TAIL NS ns.test-ul-auth.TAIL	Yes	No	(A)/(B)
9. u3-2	Q An Au Ad	A? two.test-u3-2.TAIL two.test-u3-2.TAIL A a.b.c.d test-u3-2.TAIL NS ns.test-u3-2.TAIL ns.test-u3-2.TAIL A ATTACKER	ns.test-u3-2.TAIL A a.b.c.d	N/A	No	(B)
10. u3-3	Qraud	A? two.test-u3-3.TAIL — test-u3-3.TAIL NS ns.test-u3-3.TAIL ns.test-u3-3.TAIL A ATTACKER	ns.test-u3-3.TAIL A a.b.c.d	N/A	No	(B)
l1. u3-4	Q An Au Ad	A? two.sub.test-u3-4.TAIL 	ns.test-u3-4.TAIL A a.b.c.d	N/A	No	(B)
12. w-dname	Q An Au Ad	A? two.test-w-dname.TAIL test-w-dname.TAIL DNAME magic-w-dname.TAIL	(all).test-w-dname.TAIL All types	N/A	No	no DNAME from cache
13. w7	Q An Au/Ad	A? two.test-w7.TAIL ns.test-w7 two.test-w7.TAIL CNAME ns.test-w7.TAIL; A ns.test-w7.TAIL ATTACKER a.b.c.		N/A	No	[break] CNAME chain
14. w8	Q An Au/Ad			N/A	No	[break] DNAME chain
5. dname	Q An Au Ad		(all).test-dname.TAIL ALL types	N/A	Yes	no DNAME from cache
6. ak1	Q An Au/Ad	A? zweil.test-akl.TAIL zweil.test-akl.TAIL CNAME onel.test-akl.TAIL; onel.test-akl.TAIL CNAME onel.magic-akl.TAIL —	onel.test-akl.TAIL ALL TYPES	N/A	Yes	[break] CNAME chain
7. w11	Q An Au Ad	A? zwei.onel.test-w11.TAIL 	onel.test-wll.TAIL NS ANY	N/A	Yes	(A)
18. w11bis	Ad Q An Au Ad		onel.test-w11bis.TAIL NS ANY	N/A	Yes	(A)/(B)

"Internet-wide study of DNS cache injections" [KSW17] examines 18 different techniques


There may be many others yet to be discovered

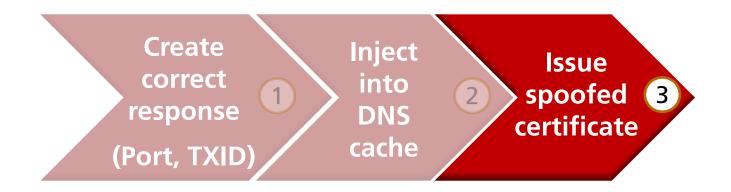
[KSW17] A. Klein, H. Shulman and M. Waidner, "Internet-wide study of DNS cache injections," IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, Atlanta, GA, 2017

DNS RESOLVERS APPLY DIFFERENT POLICIES

Deciding which records to cache and which to overwrite

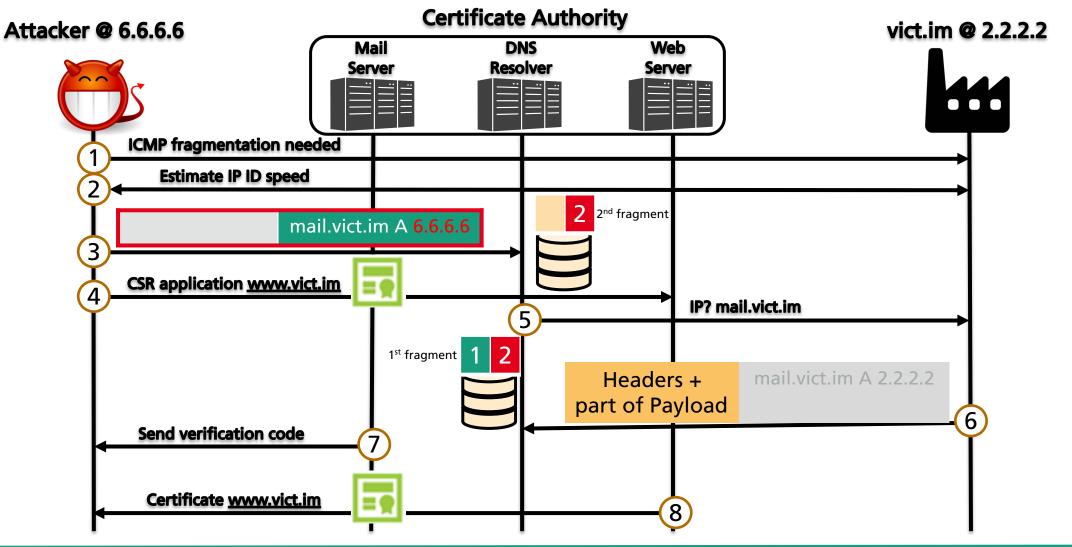
DIFFERENT DNS SERVER ARE VULNERABLE TO DIFFERENT PAYLOADS

		BIND	BIND	Unbound	MaraDNS 3.2.07	PowerDNS	MS DNS 6.1 Win Server'08	MS DNS 6.2 Win Server'12	MS DNS 6.3 Win Server'12	Google Public	Open	BIND 9.10.2-P2	Nominum Vantio	Nominum Vantio
	Name	9.10.2-P2	9.4.1	1.5.4	Deadwood	3.7.3	R2 6.1.7601)	6.2.9200	R2 6.3.9600	DNS	DNS	w/DNSSEC	CacheServe v5	CacheServe v7
1	ns0	no	yes	yes	no	yes	yes	yes	yes	no	yes	no	no	no
2	ns0-auth	no	yes	yes	no	yes	no	no	no	no	no	no	no	no
3	ns	yes	yes	yes	no	yes	yes	yes	yes	no	yes	no	no	no
4	ns-auth	yes	yes	yes	no	yes	no	no	no	no	no	no	no	no
5	ns2	yes	yes	yes	no	yes	yes	yes	yes	no	yes	no	no	no
6	ns2-auth	yes	yes	yes	no	yes	no	no	no	no	no	no	no	no
7	b4	no	no	no	no	yes	yes	yes	yes	no	yes	no	no	no
8	u1-auth	no	no	yes	no	yes	no	no	no	no	no	no	no	no
9	u3-2	no	no	yes	no	yes	yes	yes	yes	no	yes	no	no	no
10	u3-3	no	no	yes	no	yes	yes	yes	yes	no	no	no	no	no
11	u3-4	yes	yes	yes	no	yes	yes	yes	yes	no	yes	yes	no	no
12	w-dname	yes	yes	no	no	no	no	yes	yes	no	no	yes	no	no
13	w7	no	no	no	no	yes	yes	yes	yes	no	yes	no	no	no
14	w8	yes	yes	no	no	yes	yes	yes	yes	no	yes	no	no	no
15	dname	yes	yes	no	no	no	no	yes	yes	no	no	yes	no	no
16	ak1	yes	yes	no	no	yes	yes	yes	yes	yes	yes	no	no	no
17	w11	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
18	w11bis	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

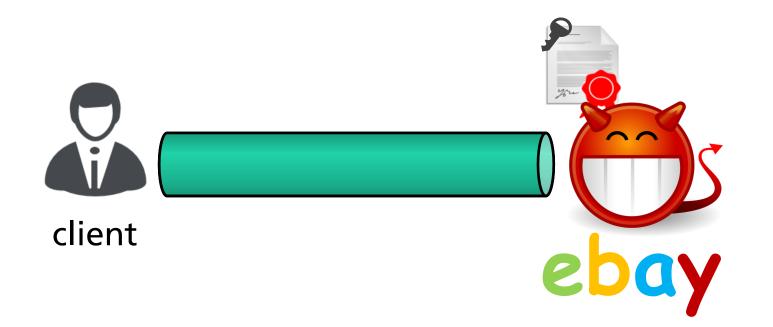


SO WE CAN TRY TO ATTACK OUR VICTIMS BY

- Fingerprinting DNS server
- Selecting payload
- Poisoning DNS cache with payload
 - e.g. using Fragmentation



AND THE FINAL STEP



PUTTING IT ALL TOGETHER

IMPERSONATION SUCCESSFUL!

Our certificate is signed by a trusted CA.

DEFENCES

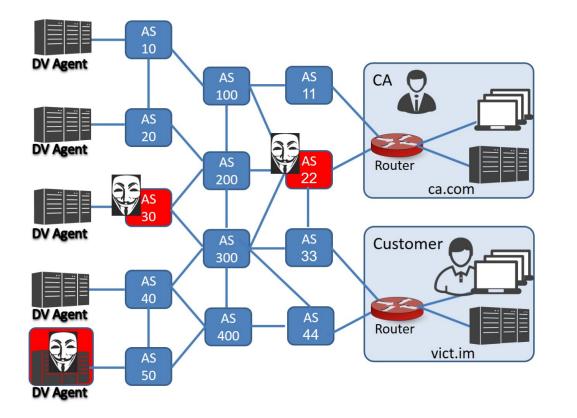
SHORT TERM DEFENCES

- Disable caching
 - Makes the attack hard but not impossible
- Disable IP fragmentation
 - Will disconnect some networks
- Force DNS over TCP
 - Off-path TCP injections attacks do exist
 - Offers no security against MITM attackers

LONG TERM DEFENCES

DNS over HTTPS/TLS

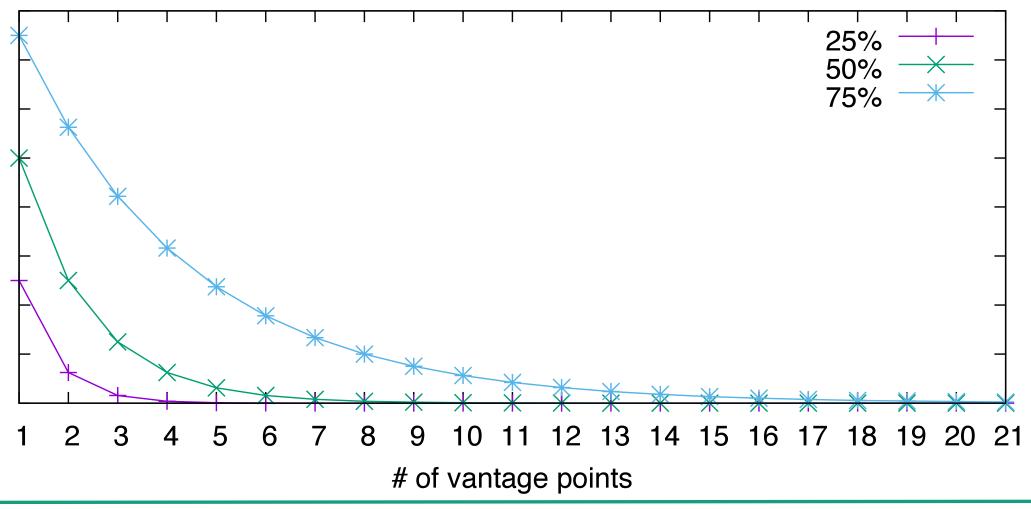
Securing PKI with PKI?


DNSSec

If fully deployed (proposed in mid-90s)

Domain Validation++

DOMAIN VALIDATION++



For more details, visit <u>pki.cad.sit.fraunhofer.de</u>

- Drop-in replacement for conventional Domain Validation
- Validation performed from multiple vantage points
- Secures DV even against global MITM attackers
 - even they cannot be everywhere
- Each vantage point has a local resolver
 - Hardened config / Caching disabled
- Uses orchestrator that evaluates voting of DV agents each performing the DNS part
- Communicate via HTTPS (fixed certificates)
- Validation succeeds if majority returns the same response

SIMULATION OF ATTACKER'S SUCCESS

ADVICES

- Disable caching for DV resolvers
- Adopt DV++
- Harden DNS resolvers
- Limit fragmentation to reasonable values (e.g. MTU >= 1280)

Deploy DNSSec

DNSSEC DEPLOYMENT IS CHALLENGING...

- 1/3 signed-domains cannot be validated
- 35% domains signed with shared keys
- 90% domains signed with weak keys (\leq 1024 bits)
- 70% signed domains do not refresh keys

CONCLUSION

CONCLUSION

- Deployment of security in the Internet is challenging
 Similar problems in many systems
- How to make local enhancement of security work
 - Understand the landscape
 - See beyond the horizon
 - Security at partial adoption
 - Give incentives to adapt new technologies

THANK YOU FOR YOUR ATTENTION

QUESTIONS?

HTTPS://PKI.CAD.SIT.FRAUNHOFER.DE

