
Pure In-Memory (Shell)Code Injection
In Linux Userland

DeepSec’18, Vienna, Austria

Disclaimer
The views and opinions expressed in this presentation are

those of the author and do not necessarily represent
official policy or position of my employer or of its clients.

$ finger -l $USER

Login name: reenz0h In real life: reenz0h
Directory: /home/sweeTHome Shell: /usr/bin/ipython
Last login Fri Jun 29 22:21 on rawttyS0 from ::1
Unread mail since Tue Feb 14 23:40:24 2017
Plan:
 * Senior Security Researcher / Red Teamer @ Big Company
 * Former (sys|net) engineer
 * Speaker/Trainer
 * Organizer of x33fcon security conference, Gdynia, Poland
 * Founder/CEO of Sektor7 research company

about(me);

 * Problem Description
 * Common Code Execution w/ Artifacts
 * Communication Channels (IB/OOB) w/ compromised system
 * In-Memory-Only Methods

- Live Demos
 * OPSEC considerations
 * References

agenda(DeepSec);

#define PROBLEM;

* Scenario:
- breached into a Linux system;
- access to interactive shell w/ or w/o allocated PTY;
- post-exploitation activities w/ additional tools;

* Objective:
- run extra tools w/o touching disk;
- use only what is available on compromised system;
- optionally bypass noexec flag set on partitions;

#redefine PROBLEM;

Living off the land…

MacGyver style

send_payload(victim);

Communication channels (methods to deliver payloads):
* “Out-Of-Band”:
 network protocols/sockets (uni|multi|broad|any-cast),
 internal/extrenal devices
 * “In-Band”:
 TTY as a data link

In-Memory-Only Methods

shellcode(DEMO);

The following shellcode
will be used during
DEMO sessions.

mount(tmpfs);

NAME

 tmpfs - a virtual memory filesystem

DESCRIPTION

 The tmpfs facility allows the creation of filesystems whose
contents reside in virtual memory. Since the files on such filesystems
typically reside in RAM, file access is extremely fast.

mount(tmpfs);

execve(gdb);

DESCRIPTION

[...]

 GDB can do four main kinds of things (plus other things in support of
these) to help you catch bugs in the act:

 · Start your program, specifying anything that might affect its behavior.

 · Make your program stop on specified conditions.

 · Examine what has happened, when your program has stopped.

 · Change things in your program, so you can experiment with correcting
the effects of one bug and go on to learn about another.

execve(gdb);

DEMO

gdb(POC);

execve(python);

Use CTYPES to run your shellcode in memory:
* load libc;
* mmap() new W+X memory
region for shellcode
* copy shellcode into
mmap’ed buffer
* make the buffer ‘callable’
* make the call
* profit...

execve(python);

DEMO

python(POC);

NAME
 dd - convert and copy a file

DESCRIPTION
 Copy a file, converting and formatting according to the operands.

--

NAME

 proc - process information pseudo-filesystem

DESCRIPTION

 The proc filesystem is a pseudo-filesystem which provides an
interface to kernel data structures.

dd(procfs);

dd(procfs);

This translates to:
“Make dd modify itself on the fly”

But… 2 problems: stdin and stdout; ASLR

dd(procfs);

Problem #1: dd closes stdin and stdout

Solution: dup()

dd(procfs);

Problem #2: ASLR

dd(procfs);

Solution: change execution domain (aka personality)

DESCRIPTION
 Linux supports different execution domains, or personalities, for
each process. Among other things, execution domains tell Linux how
to map signal numbers into signal actions. The execution domain
system allows Linux to provide limited support for binaries compiled
under other UNIX-like operating systems.

[…]

 ADDR_NO_RANDOMIZE (since Linux 2.6.12)
 With this flag set, disable address-space-layout randomization.

dd(procfs);

Turning ASLR off at runtime (from userland):

dd(procfs);

Write-What(Shellcode)-Where?
PLT? Risky...

dd(procfs);

DEMO

dd(POC);

call(MOAR_POWER);

Shellcode is kinda cool, but coding complicated stuffs in asm is
a PITA.

We want to run an executable (ELF object).

So…

mkfifo();

Fails…

mmap() cannot
find target file
to load.

memfd_create();

SYNOPSIS

 #include <sys/memfd.h>

 int memfd_create(const char *name, unsigned int flags);

DESCRIPTION
 memfd_create() creates an anonymous file and returns a file descriptor
that refers to it. The file behaves like a regular file, and so can be modified,
truncated, memory-mapped, and so on. However, unlike a regular file, it lives
in RAM and has a volatile backing storage. Once all references to the file are
dropped, it is automatically released.

[...]
 The memfd_create() system call first appeared in Linux 3.17; glibc
support was added in version 2.27.

memfd_create();

Shellcode:

memfd_create();

DEMO

memfd_create(POC);

opsec();

* Logs
* Process list
* Swappiness
 - mlock(), mlockall(), mmap() - CAP_IPC_LOCK || root
 + ulimits
 - sysctl vm.swappiness / /proc/sys/vm/swappiness - root
 - cgroups (memory.swappiness) - root || priviledge to modify
 cgroup
 + does not guarantee that under heavy load memory
manager will not swap the process to disk anyway (ie. root
cgroup allows swapping and needs memory)

bottom_line();

Be like MacGyver

Questions?

twitter: @x33fcon
https://www.x33fcon.com
https://www.sektor7.net

exit(“Thank you”);

call(references);

* The Design and Implementation of Userland Exec by the grugq
 https://grugq.github.io/docs/ul_exec.txt

* Advanced Antiforensics : SELF by Pluf & Ripe
 http://phrack.org/issues/63/11.html

* Implementation of SELF in python by mak
 https://github.com/mak/pyself

* Linux based inter-process code injection without ptrace(2) by Rory
McNamara
 https://blog.gdssecurity.com/labs/2017/9/5/linux-based-inter-process-code-injection-without-
ptrace2.html

