
Extracting a 19-Year-Old Code
Execution From WinRAR

• I am a vulnerability researcher @ Check Point Research

• Worked @ Akamai as a security researcher

• Worked @ IBM as a malware researcher

• Twitter: @NadavGrossman

Introduction | Who Am I?

• Fuzzing 101

• Step-by-Step explanation about the fuzzing process we did
• the evolution of our harness / fuzzing process until finding the critical

vulnerability

• Root cause Analysis

• Exploitation process

• PoC

• Conclusions

• Aftermath

Introduction | Agenda

Introduction | What is WinRAR?

• WinRAR is a trialware file archiver utility for Windows

• closed source

• Developed by RARLAB and first released in 1995

Introduction | What is WinRAR?

Introduction | Motivation for the
research
• Good results from fuzzing Adobe Reader with WinAFL fuzzer

Research conducted by @yoavalon and @NetanelBenSimon
https://research.checkpoint.com/50-adobe-cves-in-50-days/

https://research.checkpoint.com/50-adobe-cves-in-50-days/

Introduction | Motivation for the
research
• Good results from fuzzing Adobe Reader with WinAFL fuzzer

Research conducted by @yoavalon and @NetanelBenSimon
https://research.checkpoint.com/50-adobe-cves-in-50-days/

• AFL intended for fuzzing file formats, WinRAR support 17 archive types

• WinRAR is popular program and has more than 500M users worldwide

• Attractive target, Zerodium offered $100K for an RCE exploit in WinRAR

https://research.checkpoint.com/50-adobe-cves-in-50-days/

Introduction | Motivation for the
research

Fuzzing 101 | What Does Fuzzing
Mean?

• Automated software testing technique that provides to a computer program:
• Invalid data
• Unexpected data
• Random data

• The program is monitored for exceptions such as:
• Crashes
• memory leaks
• Failing built-in code assertions

Fuzzing 101 | Dumb Fuzzing VS Smart
Fuzzing
• There are 2 major types of fuzzing:

• Dumb Fuzzing = no feedback from the fuzzed program.

• Smart Fuzzing = getting feedback on the fuzzed program

Fuzzing 101 | Dumb Fuzzing VS Smart
Fuzzing
• There are 2 major types of fuzzing:

• Dumb Fuzzing = no feedback from the fuzzed program.

• Smart Fuzzing = getting feedback on the fuzzed program

• smart fuzzing gets insights on the fuzzed program and utilizes it:
• expanding the code coverage and the chances for crashes.

• dumb fuzzing is a blind fuzzing without insights on the fuzzed program

Fuzzing 101 | What is AFL?

• AFL = American Fuzzy Lop

• Security-oriented fuzzer for coverage-guided fuzzing

• Created by Michał Zalewski from Google / Project Zero

Fuzzing 101 | What is AFL?

• AFL = American Fuzzy Lop

• Security-oriented fuzzer for coverage-guided fuzzing

• Created by Michał Zalewski from Google / Project Zero

• Open source project: http://lcamtuf.coredump.cx/afl/

http://lcamtuf.coredump.cx/afl/

Fuzzing 101| Code Coverage and Basic
Blocks

Fuzzing 101| Code Coverage and Basic
Blocks

Fuzzing 101| Code Coverage and Basic
Blocks

Fuzzing 101| Code Coverage and Basic
Blocks

Fuzzing 101| Code Coverage and Basic
Blocks

Fuzzing 101| Code Coverage and Basic
Blocks

Fuzzing 101| Code Coverage and Basic
Blocks

Fuzzing 101| Code Coverage and Basic
Blocks

Fuzzing 101| Code Coverage and Basic
Blocks

Fuzzing 101| Code Coverage and Basic
Blocks

Fuzzing 101 | What is AFL?

Fuzzing 101| What is WinAFL?

• WinAFL fuzzer is a fork of AFL fuzzer for Windows

• Used for fuzzing closed source binaries

• Supports binary instrumentation only using DynamoRio

Fuzzing 101| What is WinAFL?

• WinAFL fuzzer is a fork of AFL fuzzer for Windows

• Used for fuzzing closed source binaries

• Supports binary instrumentation only using DynamoRio
• You can think about instrumentation as a smart hooking mechanism

WinAFL 101 | WinAFL Workflow

1. Your target runs normally until your target function is reached.

2. WinAFL starts recording coverage

3. Your target function runs until return

4. WinAFL reports coverage, rewrites the input file and patches EIP so
that the execution jumps back to step 2

5. After your target function runs for specified number of iterations,
the target process is killed and restarted.

WinAFL 101 | Target Function
Requirements

The target function should do these things during its lifetime:

1. Open the input file

2. Parse it

3. Close the input file

WinAFL 101 | Target Function
Requirements

The target function should do these things during its lifetime:

1. Open the input file

2. Parse it

3. Close the input file

4. Return normally (So that WinAFL can "catch“ this return)

WinAFL 101 | What is a Harness
• A harness is the code you stitch for fuzzing the target function

• Harness could be:
• The binary itself
• Patched or modified version of the binary

• Chunk of the program that we want to fuzz

• Custom code which calls a specific export of the target dll

WinAFL 101 | What is a Harness
• A harness is the code you stitch for fuzzing the target function

• Harness could be:
• The binary itself
• Patched or modified version of the binary
• Chunk of the program that we want to fuzz
• Custom code which calls a specific export of the target dll

• It contains or calls the functionality that we want to fuzz

• There are 2 types of harnesses:
• Internal
• external

WinAFL 101 | Corpus

• Baseline of input files that being tested on the fuzzed program

• The fuzzer mutates the corpus to generate files that produce new coverage

WinAFL 101 | Corpus
• Baseline of input files that being tested on the fuzzed program

• The fuzzer mutates the corpus to generate files that produce new coverage

• Each file from the corpus should:
• Produce new/unique code coverage
• Be the smallest as possible and produce the most coverage

• To create an effective corpus you should:
• Generate or search for small and different inputs from the format you want to fuzz
• Minimize the input files to those that create the most coverage using winafl-cmin.py

WinAFL 101 | How to Run WinAFL
afl-fuzz.exe [afl options] -- [instrumentation options] -- target_cmd_line

[afl options]:

-i [corpus folder] -o [output folder] -t [timeout for each run] -D [DynamoRio Path]
<-M/-S> [master or slave]

[instrumentation options]:

-fuzz_iterations [20000] –coverage_module [unacev2.dll]

–target_module [WinRAR.exe] -target_method [extract_func]

–covtype [edge] –nargs 2

[target_cmd_line]:

C:\program files\WinRAR\WinRAR.exe x @@

WinAFL 101 | External Harness

WinAFL 101 | External Harness

• A custom code which loads and calls the target binary (DLL)

• It gets the test case file from WinAFL

• It adjusts the target binary for being fuzzable
• Calls to set of export function for example: init(), parse(), clean()

WinAFL 101 | Internal Harness

WinAFL 101 | Internal Harness

• Using the binary as is or patch it to transform it to be fuzzable

• Patching work:
• patch “select file dialog” to a function parameter which WinAFL can pass (CLI)

• patch binary calls to ExitProcess() API to return

• Remove redundant code from the binary which delays the fuzzing process

Fuzzing Take #1 | Our Initial Corpus

• @EyalItkin found an interesting research conducted by University of Oulu

• https://www.ee.oulu.fi/roles/ouspg/PROTOS_Test-Suite_c10-archive

• A giant corpus that contains thousands of archive files from each type

• We minimized it using winafl-cmin.py from 100K to 100 samples per type

For example, R:\ACE_FUZZER\output_folders\Slave_2\

https://www.ee.oulu.fi/roles/ouspg/PROTOS_Test-Suite_c10-archive

Fuzzing Take #1 | How to start fuzzing
WinRAR

• Stitched an internal harness inside WinRAR executable

• Start by corpus that contains un-popular / old dated file formats

• Detect memory corruptions by using page heap option of GFlags

Fuzzing Take #1 | Fuzzing WinRAR

• Problems we had:
1 . WinRAR gets parameters by GetCommandLineW

use –f option of WinAFL which sets constant input file name

2. WinRAR uses GUI even when CLI parameters are forwarded

we had to patch GUI’s thread and APIs

3. WinRAR does CRC checks for archives during the extraction process

We found CLI options for: Parsing broken archive, but it doesn’t work on all formats

Fuzzing Take #1 | Our Fuzzing
Environment
• 20 cores server

• VMWare ESX instance for each team member

• Custom windows 10 image without:
• Windows Indexing Service
• Send crashes to Microsoft
• Basic user interface

• Using RamDisk to speed-up the fuzzing process

Fuzzing Take #1 | Conclusions

• Use BugID – for bug triage
https://github.com/SkyLined/BugId

• Remove “old files” from the extraction folder, to free up the RAM

https://github.com/SkyLined/BugId

Fuzzing Take #1 | Results

4 vulnerabilities in 3 file formats: RAR, LZH, ACE

• OOB-Write X 2

• Use-After-Free X 1

• Null Dereference X 1

• We notified about 3 of them:
• CVE-2018-20252, CVE-2018-20253, CPRID-2038

• The Null Dereference was interesting
• we continued to research its module

Fuzzing Take #1 | Results

• The Null-Dereference found in UNACVE2.dll

• We checked the dll and found:
• Compiled back in 2006!!!
• Without ASLR or DEP!

ACE 101 | ACE?!

• ACE is a data compression archive file format

• Developed by Marcel Lemke in ~1998, bought by e-merge GmbH

• Peak of its popularity 1999–2001, it had a better compression rates than RAR

• Creation/compression of an ACE archive is protected by a patent

• Extraction/decompression of ACE archive is *not* protected by a patent

• A shareware named WinAce by e-merge is used to compress ACE files

• e-merge provided a freeware DLL for ACE decompression

ACE 101 | ACE?!

ACE 101 | ACE?!

ACE 101 | Understanding the ACE file
format
• We found a pure python project named acefile, its features are:

1. It can extracts ACE archives.

2. It has a helpful feature that prints the file format header

ACE 101 | Understanding the ACE file
format

ACE 101 | Understanding the ACE file
format

ACE 101 | Understanding the ACE file
format

Is there a
chance to

find a critical
vulnerability?

It’s a
GOLD
MINE

!

Fuzzing Take #2 | Improved WinRAR generic fuzzer
 (CRC bypass)

• Changed the corpus to ACE file only

• We patched the CRC checks in unacv2.dll

Fuzzing Take #2 | Results and Conclusions
 (CRC bypass)

• WinRAR loads and unloads unacev2.dll for each fuzzing iteration

• WinAFL generates test cases that triggers other formats parsing code

• This fuzzing approach is too slow, we need a different approach!

 Fuzzing Take #3 | Creation of a custom harness
(Ace dedicated fuzzer)

• RE how WinRAR uses unacev2.dll for ACE file extraction and mimicked it

• Quick RE founds that 2 exported functions should be called in this order:

1. An initialization function named ACEInitDll:

2. An extraction function named ACEExtract:

Let’s
Search For
An Open
Source!

 Fuzzing Take #3 | Searching for an open source
(Ace dedicated fuzzer)

• Found a project named FarManager that uses unace.dll

• FarManager includes a detailed header file for the unknown structs:

• Loading the headers to IDA, ease the RE of how WInRAR uses the dll

• We mimicked our harness in the same way

Fuzzing Take #3 | What is this file?!

• Summarize

Bug Analysis | Quick Bug Analysis

• The harness extracts the archive to sub-directories under “output_folders”

• Why do we have a new folder named sourbe in the parent folder?

• Inside the sourbe folder we found a file named RED VERSION

For example, R:\ACE_FUZZER\output_folders\Slave_2\

Bug Analysis | Quick Bug Analysis

Bug Analysis | Quick Bug Analysis
Conclusions

we arrived at these conclusions:

1. The first char should be a ‘\’

2. * should be included in the filename at least once

Our first assumption was the first character of the filename field (the ‘\’ char) triggers the vulnerability

Bug Analysis | Trying the exploit on
WinRAR
• YES! The sourbe folder was created in the root of drive C:\sourbe

Bug Analysis | Trying the exploit on
WinRAR
• What about the file?!

• It was not created!

Bug Analysis | Why did the harness and WinRAR
 behave differently?

Callbacks defined in the harness differ from those defined in WinRAR

Bug Analysis | ACE callback functions

• We mentioned this signature when calling the exported function

• Inner member of ACEInitDllStruc contains pointers to 4 callback functions

Bug Analysis | ACE callback functions

• The callbacks are called by the unacev2.dll during the extraction process.

• The callbacks validate operation that about to happen

• If the operation is allowed, the following constant returned to the dll:
ACE_CALLBACK_RETURN_OK

• if the operation is not allowed by the callback function, it returns:

• ACE_CALLBACK_RETURN_CANCEL

• If the operation is not allowed by the callback it will be aborted.

Bug Analysis | ACE callback functions

• WinRAR does validation for the extracted filename

• In case of abort code the file will be deleted (already empty) by the dll

Bug Analysis | WinRAR’s Callback /
Validation
 Functions
1. The first char does not equal “\” or “/”.

2. The file name doesn’t start with “Path Traversal” sequences like:

 a. “..\”

 b. “../”

3. The following “Path Traversal” sequences don’t exist in the string:

 c. “\..\”

 d. “\../”

 e. “/../”

 f. “/..\”

Bug Analysis | WinRAR’s Callback /
Validation
 Functions
• The following string passes to the WinRAR callback’s validator:

 “\sourbe\RED VERSION_¶”

• Because it start with “\” The return code is:
ACE_CALLBACK_RETURN_CANCEL

• The file write operation is aborted and a call to a DeleteFile() is made

Bug Analysis | Why is * vital for the Path
Traversal?

• There is a check in unacev2.dll code that aborts the extraction operation if:
• relative path string starts with “\”

• This checks is triggered before the CreateFile()

• However our filename starts with “\”

 “\sourbe\RED VERSION*¶”

• By adding “*”or “?” characters this check is skipped!

Bug Analysis | Recap

• We found a Path Traversal vulnerability in unacev2.dll .

• Two constraints lead to the Path Traversal vulnerability

 1. The first char should be ‘\’

 2. ‘*’ should be included in the filename at least once

• WinRAR is partially vulnerable to this Path Traversal bug

Let’s Find The
Root Cause!

Bug Analysis | Understanding the root
cause
1. We used DynamoRio to record the code coverage in unacev2.dll of:

 a. regular ACE file
 b. exploit file which triggered the bug

 drrun -t drcov -- harness.exe [regular ace archive path]

 drrun -t drcov -- harness.exe [exploit archive path]

2. We then used the lighthouse plugin for IDA
• To subtracted the coverage of our exploit archive from regular ACE archive

3. we analyze the difference basic blocks and found the root cause

Bug Analysis | Understanding the root
cause

• GetDevicePathLen checks if the device or drive
name prefix appears in the Path parameter, and
returns the length of that string

• For Example, the function returns:

 C:\some_folder\some_file.ext => 3

 \some_folder\some_file.ext => 1

 \\LOCALHOST\C$\some_folder\some_file.ext => 15

 \\?\Harddisk0Volume1\some_folder\some_file.ext => 21

 some_folder\some_file.ext => 0

Bug Analysis | Understanding the root
cause

 C:\some_folder\some_file.ext

 UnACE_GetDevicePathLen()

 Returns 3

 C:\some_folder\some_file.ext

 UnACE_GetDevicePathLen()

 Returns 3

 C:\some_folder\some_file.ext

 Unknown_Clean_Function()

 “some_folder\some_file.ext”

 UnACE_GetDevicePathLen()

Returns 0

Bug Analysis | Finding the Unknown
Function
• We searched in IDA strings window, references to “:” and “\”

• We found several functions that use these string

• We put BP on all the suspected functions and started a debug session

• The Unknown function have been found after 5 minutes of debugging

• Let’s call the unknown function CleanPath

Bug Analysis | CleanPath()

• The function omits all the path traversal sequences of ..\
• It omits these sequences only once from the beginning of Path:

• C:\ - first omits it and updates the new path
• C: - omits it only if the next char is not \

• It just check of *:\ and *: (* means any char)

1. C:\try1.exe => try1.exe

2. C:try2.exe => try2.exe

3. C:\C:try3.exe => try3.exe

4. C:\C:\try4.exe => C:\try4.exe

Bug Analysis | The Bug in CleanPath
Function

• It doesn’t omit ../

• It doesn’t check recursively the path after omitting a sequence

• Let’s check this sequence first: C:\C:\some_folder\some_file.ext

 C:\C:\some_folder\some_file.ext

 UnACE_CleanPath()

 C:\some_folder\some_file.ext

 UnACE_GetDevicePathLen()

 returns 3

 CreateFile()

 WinRAR_CallBack()

 WriteFile()

CVE-2018-20250

Exploitation process | Building an Exploit

• We can extract the file to an arbitrary location

• Files in Startup Folder will be executed in boot time

• There are 2 types of Startup Folder:
• C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp

• C:\Users\<user name>\AppData\Roaming\Microsoft\Windows\Start Menu\
Programs\Startup

• The first demands high privileges / high integrity level

= RCE

Exploitation process | Building an Exploit

• If UAC is disabled in the victim machine we can use this path:
• C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp

• Otherwise, embed many files in the archive with guessed user names:
• C:\Users\John\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\

Startup

• C:\Users\Robert\AppData\Roaming\Microsoft\Windows\Start Menu\
Programs\Startup

• If UAC is disabled we have 100% success

• If UAC is enabled the odds for success are low (guessing game)

Exploitation process | Exploit Limitation

all the occurrence of these 3 sequences:

If path starts by these 6 sequences, they will be omitted only once:

1. ..\ 2. \../ 3. /../

9. C:\6. \ 8. C:5. ../ 7. / 10. C:\C:

WinRAR_callback() or/and CleanPath() omit these sequences:

Exploitation process | Most Powerful Exploit

• The sequence C: translated in Windows to the CWD of the process

• WinRAR CWD’s is being set by the WinRAR’s shell extension

• The shell extension set the CWD to the folder of the selected file/files

Exploitation process | Most Powerful Exploit

• The sequence C: translated in Windows to the CWD of the process

• WinRAR CWD’s is being set by the WinRAR’s shell extension

• The shell extension set the CWD to the folder of the selected file/files

Exploitation process | Most Powerful Exploit

• C: is translated to C:\Users\John\Downloads\

• the path to startup folder is:

 C:\Users\John\AppData\Roaming\Microsoft\Windows\Start Menu\ Programs\Startup

All we have to do is:

1. Go one folder backward

2. Append the relative path to the Startup folder

C: C:\C:C: CWD Set to the archive’s folder
(Downloads, Desktop, etc)

Exploitation process | Most Powerful Exploit

 C:\C:C:../AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\mal.exe

 C:\C:C:../AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\mal.exe

 UnACE_CleanPath()

 C:../AppData/Roaming\Microsoft\Windows\Start Menu\Programs\Startup\mal.exe

 WinRAR_CallBack()

 returns 2
UnACE_GetDevicePathLen()

 CreateFile()

 WriteFile()

C:\Users\John\AppData\Roaming\Microsoft\Windows\......\Startup\mal.exe

Exploitation process | Demo

Exploitation process | Demo

Coordinated Disclosure

• 24/12/2018 - Check Point notify RARLAB about the bug in unacev2.dll

• 28/01/2019 - A Fixed version of WinRAR was released

• 20/02/2019 - Blog post was published
https://research.checkpoint.com/2019/extracting-code-execution-from-winrar/

https://research.checkpoint.com/2019/extracting-code-execution-from-winrar/

Aftermath

• ACE is dead! WinRAR decided to drop ACE archive support starting with
WinRAR 5.70

• After our research, we were notified, that there is now a Metasploit
module for our exploit

Conclusions

• Don’t use software without automatic update in your organization

• Vulnerabilities can reside in popular software for decades

• Don’t use in your product code from an unmaintained projects

• If you want to omit functionality from your code, don’t leave “dead code”

 Thank You!
• TODO: add gif

• Mr bena + queen

Q&A

Twitter: @NadavGrossman

