CP<I> Extracting a 19-Year-Old Code
CHECK POINT RESEARCH Execution From WinRAR

Introduction . WWho Am 17

* | am a vulnerability researcher @ Check Point Research
* Worked @ Akamai as a security researcher
* Worked @ IBM as a malware researcher

* Twitter: @NadavGrossman

Introduction = Agenda

* Fuzzing 101

* Step-by-Step explanation about the fuzzing process we did

* the evolution of our harness / fuzzing process until finding the critical
vulnerability

* Root cause Analysis
* Exploitation process
* PoC

* Conclusions

* Aftermath
BIAAMHSEC

introduction | What I1s WINRAR?

* WInRAR is a trialware file archiver utility for Windows

* closed source

* Developed by RARLAB and first released in 1995

BISNYSEC

introduction | What I1s WINRAR?

o} WInRAR (evaluation copy)

File Commands T Favorites Optiens Help

S EOme @ B

Add Extract To Test View Delete Find Wizard Info Repair

Program Files (;

MName
der
Applica
|| Default.5FX 3 SFX File
__ Descript.ion IOM File
_ Licensetxt Text Document
€ Order.htm 3 Chreme HTML De...
Application
Text Document
Application extens...
Application extens...
ST File
Text Document
Application extens...
Application
LT File
Application 8 %:02 PM
Text Document 2018 2:38 PM
File 0/20 01 PM
Compiled HTML ... D PM
Application 201 pIx]
SFX File f30/2018 9:01 PM

e DEEPEHER

I

(VR
o -
™A

fa T

introduction | Motivation for the
research

* Good results from fuzzing Adobe Reader with WIinAFL fuzzer
Research conducted by @yoavalon and @NetanelBenSimon

BISNYSEC

https://research.checkpoint.com/50-adobe-cves-in-50-days/

introduction | Motivation for the
research

* Good results from fuzzing Adobe Reader with WIinAFL fuzzer
Research conducted by @yoavalon and @NetanelBenSimon

* AFL intended for fuzzing file formats, WIinRAR support 17 archive types

* WInRAR is popular program and has more than 500M users worldwide

* Attractive target, Zerodium offered $100K for an RCE exploit in WinRAR
MSNYSEC

https://research.checkpoint.com/50-adobe-cves-in-50-days/

introduction | Motivation for the

research

Zerodium &
g @Zerodium

We're still paying up to $100,000
for #0day exploits (code
execution) affecting major

file archivers: WinRAR, 7-Zip,
WinZip (on Windows) or tar (on
Linux). For more information:
zerodium.com #BigBounties

21:07 - 18 Oct 18 - Twitter Web Client

BISNYSEC

Fuzzing 101 What Does FUZZiI‘Ig
Mean?

* Automated software testing technique that provides to a computer program:
* Invalid data
* Unexpected data
* Random data

* The program is monitored for exceptions such as:
* Crashes
* memory leaks
* Failing built-in code assertions

BISNYSEC

Fuzzing 101 | Dumb Fuzzing VS Smart
Fuzzing

* There are 2 major types of fuzzing:
* Dumb Fuzzing = no feedback from the fuzzed program.
* Smart Fuzzing = getting feedback on the fuzzed program

BISNYSEC

Fuzzing 101 | Dumb Fuzzing VS Smart
Fuzzing

* There are 2 major types of fuzzing:
* Dumb Fuzzing = no feedback from the fuzzed program.
* Smart Fuzzing = getting feedback on the fuzzed program

* smart fuzzing gets insights on the fuzzed program and utilizes it:
* expanding the code coverage and the chances for crashes.

* dumb fuzzing is a blind fuzzing without insights on the fuzzed program

BISNYSEC

Fuzzing 101 What i1s AFL?

* AFL = American Fuzzy Lop

* Security-oriented fuzzer for coverage-guided fuzzing

* Created by Michat Zalewski from Google / Project Zero

BISNYSEC

Fuzzing 101 What i1s AFL?

* AFL = American Fuzzy Lop

* Security-oriented fuzzer for coverage-guided fuzzing
* Created by Michat Zalewski from Google / Project Zero

* Open source project:

BISNYSEC

http://lcamtuf.coredump.cx/afl/

Fuzzing 101| Code Coverage and Basic

Blocks E
o

-

BISNYSEC

Fuzzing 101| Code Coverage and Basic

Blocks E
o

-

BISNYSEC

Fuzzing 101, Code Coverage and Basic

Blocks E
I

D

BISNYSEC

Fuzzing 101, Code Coverage and Basic

Blocks D
I

-

BISNYSEC

Fuzzing 101, Code Coverage and Basic

Blocks E
-

D

BISNYSEC

Fuzzing 101, Code Coverage and Basic

Blocks B
_

_

BISNYSEC

Fuzzing 101, Code Coverage and Basic

Blocks D
I

-

BISNYSEC

Fuzzing 101, Code Coverage and Basic

Blocks E
I

D

BISNYSEC

Fuzzing 101, Code Coverage and Basic

Blocks B
_

_

BISNYSEC

Fuzzing 101, Code Coverage and Basic

Blocks E
-

D

BISNYSEC

Fuzzing 101

now trying
stage execs

arithmetics
kKnown ints :
havoc

trim :

— process timing
run time

last new path
last uniq crash
last uniq hang

— cycle progress
now processing
paths timed out :
— stage progress
: interest 32/8
: 0/9990 (0.00%)

What is AFL?

american fuzzy lop 0.47b (readpng)

: 0 days, 0 hrs, 4 min, 43 sec
: 0 days, 0 hrs, 0 min, 26 sec

new edges on

uniq crashes

overall resu1ts
cycles done :
total paths :

0

195
- 0
uniq hangs :

1

. none seen yet
: 0 days, 0 hrs, 1 min, 51 sec
map coverage
: 38 (19.49%) map density :
0 (0.00%) count coverage :

findings in depth
favored paths :
: 85 (43.59%)

total execs : 654k total crashes :
exec speed : 2306/sec total hangs :
— fuzzin strategy yields
bit flips 88/14.4k, 6/14.4k, 6/14 .4k
byte flips : 0/1804, 0/1786, 1/1750

- 31/126k, 3/45.6k, 1/17.8k

1/15.8k, 4/65.8k, 6/78.2k

: 34/254k, 0/0

2876 B/931 (61.45% gain)

1217 (7.43%)

2.55 bits/tuple

128 (65.64%)

0 (0 unique)
1 (1 unique)

path ?eometry
levels : 3

pending : 178

pend fav : 114

imported : 0
variable : 0
latent : O

BISNNYSEC

Fuzzing 101 What is WIinAFL?
* WInAFL fuzzer is a fork of AFL fuzzer for Windows

* Used for fuzzing closed source binaries

* Supports binary instrumentation only using DynamoRio

BISNYSEC

Fuzzing 101 What is WIinAFL?
* WInAFL fuzzer is a fork of AFL fuzzer for Windows

* Used for fuzzing closed source binaries

* Supports binary instrumentation only using DynamoRio
* You can think about instrumentation as a smart hooking mechanism

BISNYSEC

winaFL 101 | WINAFL Workflow

Ay A

Your target runs normally until your target function is reached.
WInAFL starts recording coverage
Your target function runs until return

WInAFL reports coverage, rewrites the input file and patches EIP so
that the execution jumps back to step 2

After your target function runs for specified number of iterations,
the target process is killed and restarted.

BISNYSEC

winaFL 101 | Target Function
Requirements

The target function should do these things during its lifetime:
1. Open the input file

2. Parse it

3. Close the input file

BISNYSEC

winaFL 101 | Target Function
Requirements

The target function should do these things during its lifetime:

1.

2.

3.

4.

Open the input file
Parse it
Close the input file

Return normally (So that WIinAFL can "catch® this return)

BISNYSEC

winAFL 101 | What I1s a Harness

* A harness is the code you stitch for fuzzing the target function

* Harness could be:
* The binary itself
* Patched or modified version of the binary
* Chunk of the program that we want to fuzz
* Custom code which calls a specific export of the target dll

BISNYSEC

winAFL 101 | What I1s a Harness

* A harness is the code you stitch for fuzzing the target function

* Harness could be:
* The binary itself
* Patched or modified version of the binary
* Chunk of the program that we want to fuzz
* Custom code which calls a specific export of the target dll

* It contains or calls the functionality that we want to fuzz

* There are 2 types of harnesses:
* |Internal
* external

BISNYSEC

winAFL 101 = COrpus

* Baseline of input files that being tested on the fuzzed program

* The fuzzer mutates the corpus to generate files that produce new coverage

BISNYSEC

winAFL 101 = COrpus

* Baseline of input files that being tested on the fuzzed program

* The fuzzer mutates the corpus to generate files that produce new coverage

* Each file from the corpus should:
* Produce new/unique code coverage
* Be the smallest as possible and produce the most coverage

* To create an effective corpus you should:
* Generate or search for small and different inputs from the format you want to fuzz
* Minimize the input files to those that create the most coverage using winafl-cmin.py

BISNYSEC

winAFL 101 | How to Run WInAFL

afl-fuzz.exe [afl options] -- [instrumentation options] -- target_cmd_line

[afl options]:

[corpus folder] -o [output folder] - [timeout for each run] -0 [DynamoRio Path]
<-V/-5> [master or slave]

[instrumentation options]:
[20000] [unacev2.dll]
[WiInRAR.exe] [extract_func]
[edge] 2
[target_cmd_line]:
C:\program files\WIinRAR\WIinRAR.exe x

BISNYSEC

winAfFL 101 | External Harness

-

BISNYSEC

winAfFL 101 | External Harness

* A custom code which loads and calls the target binary (DLL)

* |t gets the test case file from WInAFL

* It adjusts the target binary for being fuzzable
* Calls to set of export function for example: init(), parse(), clean()

BISNYSEC

CONO VIS WN =

typedef void(__stdcall extract*) (FILE *f);

extract extract file = NULL;

void fuzzme(char *path) {
FILE *f = fopen(path, "rb");
extract file(f);
fclose(f);

}

int main(int argc, char *argv[])

{

HINSTANCE hinst = LoadLibrary("extraction.dll");
extract_file = GetProcAddress(hinst, "extract");

fuzzme(argv[1l]);
9;

oS E C

winafFL 101 | Internal Harness

y

BISNYSEC

winAfFL 101 | Internal Harness

* Using the binary as is or patch it to transform it to be fuzzable

* Patching work:
* patch “select file dialog” to a function parameter which WinAFL can pass (CLI)

 patch binary calls to ExitProcess() API to return

* Remove redundant code from the binary which delays the fuzzing process

BISNYSEC

Fuzzing Take #1 = Our Initial Corpus

* @Eyalltkin found an interesting research conducted by University of Oulu
* https://www.ee.oulu.fi/roles/ouspg/PROTOS Test-Suite c10-archive

* A giant corpus that contains thousands of archive files from each type

* We minimized it using winafl-cmin.py from 100K to 100 samples per type

BISNYSEC

https://www.ee.oulu.fi/roles/ouspg/PROTOS_Test-Suite_c10-archive

Fuzzing Take #1 = HOw to start fuzzing
WIinRAR

* Stitched an internal harness inside WIinRAR executable

* Start by corpus that contains un-popular / old dated file formats

* Detect memory corruptions by using page heap option of GFlags

BISNYSEC

Fuzzing Take #1 Fuzzing WInRAR

* Problems we had:
1. WInRAR gets parameters by GetCommandLineW
use -f option of WIinAFL which sets constant input file name

2. WInRAR uses GUI even when CLI parameters are forwarded
we had to patch GUI's thread and APIs

3. WIinRAR does CRC checks for archives during the extraction process
We found CLI options for: Parsing broken archive, but it doesn’t work on all formats

BISNYSEC

Fuzzing Take #1 = OUr Fuzzing
Environment

* 20 cores server

* VMWare ESX instance for each team member

* Custom windows 10 image without:
* Windows Indexing Service
* Send crashes to Microsoft
* Basic user interface

* Using RamDisk to speed-up the fuzzing process

BISNYSEC

R:\>tree

Folder PATH listing for volume RamDisk

R

L ACE_FUZZER

——DynamoRIO
——harness
——1in
—output_folders

——Master
——Slave_1
—Slave_10
—Slave_11
—Slave_12
—Slave_13
—Slave_14
—Slave_15
——Slave_16
—Slave_/
—Slave_3
——Slave_4
——Slave_5
——Slave_b
—Slave_7
——Slave_8

—Slave_9

———out_ace

—— WinAFL

Volume serial number 1s 0241-1C70

main fuzzer folder

DynamoRio folder

contains, our harness executable and the patched unacev2.dll
contains the corpus for the fuzzer

These are the corresponding folders to each fuzzer
(17 active fuzzers, 1 Master and 16 Salves).

Each fuzzer instruct its instrumented harness,

by a command line parameter that passed to the
harness, to extract the fuzzed ACE archives to one of
these folders

fuzzer data, including produced crashes and etc.
WInAFL folder

Fuzzing Take #1 Conclusions

* Use BuglD - for bug triage

* Remove “old files” from the extraction folder, to free up the RAM

BISNYSEC

https://github.com/SkyLined/BugId

Fuzzing Take #1 Results

4 vulnerabilities in 3 file formats: RAR, LZH, ACE
* OOB-Write X 2

* Use-After-Free X 1

* Null Dereference X 1

* We notified about 3 of them:
* CVE-2018-20252, CVE-2018-20253, CPRID-2038

* The Null Dereference was interesting
* we continued to research its module

BISNYSEC

Fuzzing Take #1 Results

* The Null-Dereference found in UNACVE2.dII

* We checked the dll and found:
* Compiled back in 2006!!!
* Without ASLR or DEP!

BISNYSEC

Ace 101 | ACE?!

* ACE is a data compression archive file format

* Developed by Marcel Lemke in ~1998, bought by e-merge GmbH

* Peak of its popularity 1999-2001, it had a better compression rates than RAR
* Creation/compression of an ACE archive is protected by a patent

* Extraction/decompression of ACE archive is *not* protected by a patent

* A shareware named WinAce by e-merge is used to compress ACE files

* e-merge provided a freeware DLL for ACE decompression

BISNYSEC

ACE 101

ACE?!

File View Changeto Archive Tools Contextmenu Help

Create

Archive Directory

C:\Program Files (x86)\WinAce -~

Name

[£3}..
Backup
html
projects
sfxfiles
acetools.dll
acetools.enu
acev2.dll
arcext.de
arcext.dll
arcicons.dll
cabinet.dll
4 corypt.exe
file_id.diz
find.add
find.dll
find.enu
k':j—lhelpinst.exe
infodeu. txt
language. txt
) license. doc
menu256.imf
menuimg.imf
menuimg.img
order.enu
jjorder .exe
order.ord
outbar.ini

Folder J

4 folder(s)

Open
WinAce|

1.37MB
429 KB
229KB
30.5KB
163

60.0 KB
64.0KB
36.0KB
883 bytes
256 bytes
327 KB
47.0KB
91.5KB
960 bytes
256 bytes
1.89KB
19.8 KB
19.8 KB
85.8KB
102KB
247 KB
235 bytes
356 bytes

Item type

File folder
File folder
File folder
File folder

Application exte...

ENU File

Application exte...

DE File

Application exte...
Application exte...
Application exte...

Application
DIZ File
ADD File

Application exte...

ENU File
Application
Text Document
Text Document

Microsoft Word ...

IMF File

IMF File

Disc Image File
ENU File
Application
ORD File

Configuration se...

49 file(s)

Date modified

/2018 10:52...

2018 10:51...
/2007 2:06 AM
'8/2007 2:06 AM
'8/2007 2:06 AM
2007 2:06 AM
07 2:06 AM
'8/2007 2:06 AM
'8/2007 2:06 AM
'8/2007 2:06 AM
2007 2:06 AM
'8/2007 2:06 AM
/2007 2:06 AM
2007 2:06 AM
/2007 2:06 AM
/2007 2:06 AM
/2007 2:06 AM
2007 2:06 AM
/2007 2:06 AM
'8/2007 2:06 AM
'8/2007 2:06 AM
2007 2:06 AM
/2007 2:06 AM

/2007 2:06 AM

View Properties

0 bytes in O file(s) and 1 folder(s) - Free disk space: 37,427.4 MB

BISNYSEC

Ace 101 | ACE?!

BISNYSEC

ace 101 | Understanding the ACE file
format

* We found a pure python project named acefile, its features are:
1. It can extracts ACE archives.

2. It has a helpful feature that prints the file format header

BISNYSEC

ace 101 | Understanding the ACE file
format

simple_file.txt - Notepad

File Edit Format View Help

Hello From CheckPoint!

BISNYSEC

ace 101 | Understanding the ACE file
fo rm a t Add files / Create archive ?

selection | Options | additional options | Comment
Files selected for archiving [} ¢ Advanced

[Pre

Mame
C:YW=ers\nadavar \Documentsisimple_file. tt

1 file(s) / directories selected

. =
Archive: | &,

Folders
Inciude subfalders store full path

= pDEEPEHES

ace 101 | Understanding the ACE file
format

py acefile.py —headers "C:o:slUserssnadavgrsDocuments~simple_file.ace"

BISNYSEC

volume

filename
filesize
headers

header

hdr»_=size
hdr»_type
hdr»_flags
magic
eversion
cuersion
ho=st
volume
datetime
rezepruvedl
advert
comment
rezeprued?

header

hdr_=ize
hdr»_type
hdr»_flags
packsize
origsize
datetime
attribhs
crc32
comptype
compgual
params
reservedl
filename
comment
ntsecurity
reszervedl

C:sllseprssnadavgrsDocumentsssimple_file.ace

149

MAIN:1 FILE:1 others:@

Ax4e2b6b6752

MAIN
ADUERT iS0OLID

2.8
2.8
Win32

2819-81-B6 12:58:36

d5 38 b3 d2 4e 28 BA 44
bh' =lINREGISTERED UERSION=’

hJJ
hJJ

Ax4e238853
AxAA88AA2 A
Ax8229493d
Ax8a

Ax8a
Ax3888
Ax4554

b'UszersssnadavgrsSDocumentssssimple_file.txt’

hJ L
hJ L
hJ L

FILE3Z2
ADDSIZEiS0OLID

2019-81-A3 16:H2:38
ARCHIVE

stored
ztore

BISNYSEC

volume

filename
filesize
headers

header

hdr»_=size
hdr»_type
hdr»_flags
magic
eversion
cuersion
ho=st
volume
datetime
rezepruvedl
advert
comment
rezeprued?

header

hdr_=ize
hdr»_type
hdr»_flags
packsize
origsize
datetime
attribhs
crc32
comptype
compgual
params
reservedl
filename
comment
ntsecurity
reszervedl

C:sllseprssnadavgrsDocumentsssimple_file.ace

149

MAIN:1 FILE:1 others:@

Ax4e2b6b6752

MAIN
ADUERT iS0OLID

2.8
2.8
Win32

2819-81-B6 12:58:36

d5 38 b3 d2 4e 28 BA 44
bh' =lINREGISTERED UERSION=’

hJJ
hJJ

Ax4e238853
AxAA88AA2 A
Ax8229493d
Ax8a

Ax8a
Ax3888
Ax4554

b'UszersssnadavgrsSDocumentssssimple_file.txt’

hJ L
hJ L
hJ L

FILE3Z2
ADDSIZEiS0OLID

2019-81-A3 16:H2:38
ARCHIVE

stored
ztore

BISNYSEC

- Vh"'\“l

i simple_fileace
Offset (h) 00 01

00000010 02 00
00000020 55 4E
Q0000030 53 49
1 OO
00 oo
64 6l
73 &9
63 aC
6F 6%

Offset: 0

6E

HxD - [CA\Users\nadavgr\Documents\simple_file.ace] -
16 w | AMNSI w | hex W

03 04 05 06 O7 08 0% O& OB OC OD OE OF

00|00 00 90 2R 2R 41 43 45 24 24 14 14 _Fl....*=ACE#®%, .,
&7 26 4E D5 30 B3 D2 4E 20 00 00 16 23 ..RgsaNGO:0N ...*
45 47 43 53 54 45 52 45 44 20 56 45 52 TUNREGISTERED VER
4E 22 BB :¢ 00 01 01 80 16 00 00 OO0 SICN* uF...€....
00 53 80 23 4F 20 00 00 00 3D 49 29 82 LSEEW .. .=T),
oo 54 45 [27 00|55 73 65 72 73 EC 6E &1TE' .[Osersina
67 72 5C 44 6F &3 75 6D 65 6E 74 73 5C dawvgr)Documents)
70 6C 65 SF &6 €9 6C 65 2E 74 T8 74 42 simple file.txtH
&F 20 46 72 &F 6D 20 43 68 65 63 6B 50 ello From CheckP
T4 21 oint!

Chverwrite

filename
filesize
headers

header

hdr_=zize
hdr_type
hdr_flags
magic
eversion
cuersion
host

vo lume
datetime
reservedl
advert
comment
reserved?

header

hdy_size
hdr_type
hdv_flags
packsize
origsize
datetime
attribs
crcd2
compt ype
compgual
params
reservedl
filename
comment
ntsecurity
reserved?

C=xUsersvwnadavgrsDocuments~simple_file.ace

149

MAIM:=1 FILE:1 others:

a
Ax4e266752

MAIH
ADVERT iSOLID

2.8
2.8
Win32

2019-P1-86 12:58:36

d5 38 b3 dZ 4e 20 B0 88
g:fUHHEGISTERED UERS T ON*

h'*

78
BxH1
Ax8BA1
22

22
Bx4e238053
Ax08008a204
Ax8229493d
Ax88

Ax80
Axa8006
Bx4554

b’ Usersssnadavgrs“Documentssssimple_file.txt’

h'*
h'*
h'*

FILE32
ADDSIZE 1SOLID

2019-P1-83 16:02:38
ARCHIVE

stored
store

Fuzzing Take #2 | Improved WInRAR generic fuzzer
(CRC bypass)

* Changed the corpus to ACE file only
* We patched the CRC checks in unacv2.dll

BISNYSEC

Fuzzing Take #2 | Results and Conclusions
(CRC bypass)

* WIinRAR loads and unloads unacev2.dll for each fuzzing iteration

* WInAFL generates test cases that triggers other formats parsing code

* This fuzzing approach is too slow, we need a different approach!

BISNYSEC

Fuzzing Take #3 Creation of a custom harness

(Ace dedicated fuzzer)

* RE how WInRAR uses unacev2.dll for ACE file extraction and mimicked it

* Quick RE founds that 2 exported functions should be called in this order:

1. An initialization function named ACEInitDII:
INT _ stdcall ACEInitDll(unknown struct 1 *struct 1);

e struct_1: pointer to an unknown struct

2. An extraction function named ACEExtract:
INT _ stdcall ACEExtract(LPSTR ArchiveName, unknown struct 2 *struct 2);

eArchiveName: string pointer to the path to the ace file to be extracted

estruct_2: pointer to an unknown struct

Let’s
Search For
An Open

Source!

Fuzzing Take #3 Searching for an open source
(Ace dedicated fuzzer)

* Found a project named FarManager that uses unace.dll

* FarManager includes a detailed header file for the unknown structs:
INT _ stdcall ACEInitDll(Dl1Data);

INT _ stdcall ACEExtract(LPSTR ArchiveName, Extract);

* Loading the headers to IDA, ease the RE of how WINRAR uses the dll

* We mimicked our harness in the same way

BISNYSEC

R:\>tree
Folder PATH listing for volume RamDisk
Volume serial number is 0241-1C70

R-

| ACE_FUZZER main fuzzer folder
——DynamoRIO0 DynamoRio folder
——harness contains, our harness executable and the patched unacev2.dll
[VN contains the corpus for the fuzzer
——output_folders
——Master
——Slave_1
——Slave_10
——Slave_11
—E]:}:E—ﬁ These are the corresponding folders to each fuzzer
| Slave 14 (17 active fuzzers, 1 Master and 16 Salves).
—S} ave_%g Each fuzzer instruct its instrumented harness,
[oavess by a command line parameter that passed to the
L slave 3 harness, to extract the fuzzed ACE archives to one of
—Slave_4 these folders
——S lave_5
—Slave_6
——S lave_7/
——Slave_8
Slave_9))
——out_ace fuzzer data, including produced crashes and etc.
- WinAFL folder
——sourbe The folder was created in this path because of a Path Traversal Vulnerability

Bug Analysis | QU Ick Bug Ana |ySiS
* The harness extracts the archive to sub-directories under “output_folders”

* Why do we have a new folder named sourbe in the parent folder?

* Inside the sourbe folder we found a file named RED VERSION

BISNYSEC

Bug Analysis QUiCk Bug Analysis

“ Home Share
T This PC RamDisk (R:) zourbe

S Mame

" Favorites

4 Downloads || RED VERSIOM_T

4 Rarant nlarae

RED VERSION_T - Notepad
File Edit Format Wiew Help
510

1 item

hdr_siz=e
hdr»_type
hdy»_flags
magic
eEversion
cUeprsion
ho=st

vo lume
datetime
reservedl
advert
comment
reserved?

hdr_size
hdy_type
hdr»_flags
packsize
origsi=e
datetime
attrihs
crcid
comptype
compgual
params
reservedl
filename
1nninr-n

Ax4dB857ach

MAIN
ADUERT iSOLID

2.8
2.8
Win32

2018-12-A5 15:22:22

4c 2d 1b £f5 4d 28 B8 B4
bh' =lINREGISTERED UERSION=*

hJJ
hJJ

R

AxA1
Bx880H81

3

3
Bx4d857a8hb
BxA000AR2 A
Bx77h79c2d
BxHA

BxA3
AxA0Aa
Ax4554

L

FILE32
ADDSIZE iSOLID

2818-12-A5 15:28:22
ARCHIVE

stored
normal

b' “ssourbesSRED UERS I ON=%x14~xB8dxBA~xHA8"

® HxD - [RANACE_FUZZER\out_ace\Slave(5\gueue\id_000721] -

W] File E Search ew Ana
- - 16

g id_000721

Cffsec () 00 01 02 03

Offset: 0

04
00
g5
47
Zh

=

54
S6
4aCc
47

05 06 O7
00 90 2h
4D 4C 2D
Gl SiE] S

BN
7L 25

4D

45 52 53
78 05 20
43 53 54

og
20
sC
49
Az

45

hex

0B 0

43
4D
3=

o0
&F
4E
a0
45

45
20
g4
00
T
2B
oo
44

oD

2

0g
o6
0ag

-
L

62
00
00
T6

.el.. .. ®*ACE®¥® |
Ez ML-.8M .. LF
UNREGISTERED VER
SICH*—IW...€....

LWt Z. M LW
....TE. .\ sourbe'
RED VERSION+*. .d.
. 6Lx.
UNEEGISTERED vER

o T

a4

Chverwrite

hdr_size
hdr_type
hdr_flags
magic
eversion
cuersion
host

vo lume
datetime
reservedl
advert
comment
reserved2

hdr_size
hgr_type

iz
datetime
attribs
crc32
comptype
compgual
paramns
reservedl
filename

A

MAIN
ADVERT iSOLID

2.8

2.8
Win32

5]

Bx4d85%7ach 2018-12-85 15

4c 2d 1b £f5 4d 28 9@ B
E:TUNREGISTERED UERS I ON=*

h*?
87

BxB1 FILE32
BxBa81 ADDSIZE!ISOLID
3

2818-12-85 15
ARCHIVE

K]
Bx4dB857aBh
AxABBARB2A
Bx7?7b79c2d
BxA8

BxA3
BxB08a
Bx4554

stored
normal

:209:22

h:}\suurhe\\RED UERS I OM*\x14\xB8d\ =88 88"

Bug Analysis QUiCk Bug Analysis
Conclusions

we arrived at these conclusions:
1. The first char should be a ‘\’

2. " should be included in the filename at least once

BISNYSEC

Bug Analysis Trylng the exploit on
WIinRAR

* YES! The sourbe folder was created in the root of drive C:\sourbe

BISNYSEC

Bug Analysis Trylng the exploit on
WIinRAR

* What about the file?! 9 N BB
* |t was not created!

BISNYSEC

Bug Analysis | Why did the harness and WinRAR
behave differently?

Callbacks defined in the harness differ from those defined in WIinRAR

BISNYSEC

Bug Analysis | ACE callback functions

* We mentioned this signature when calling the exported function

INT __stdcall ACEInitD11(Dl1lData);

* Inner member of ACEInitDIIStruc contains pointers to 4 callback functions
INT (__stdcall *InfoCallbackProc) (h Info);

INT (__stdcall *ErrorCallbackProc) (Error);

INT (__stdcall *RequestCallbackProc) (Request);

INT (__stdcall *StateCallbackProc) (State);

Bug Analysis | ACE callback functions

* The callbacks are called by the unacev2.dll during the extraction process.

* The callbacks validate operation that about to happen

* If the operation is allowed, the following constant returned to the dll:
ACE_CALLBACK_RETURN_OK

* if the operation is not allowed by the callback function, it returns:
* ACE_ CALLBACK_RETURN_CANCEL

* If the operation is not allowed by the callback it will be aborted.

BISNYSEC

Bug Analysis | ACE callback functions

* WINRAR does validation for the extracted filename

* In case of abort code the file will be deleted (already empty) by the dll

BISNYSEC

62
63
64
65
66
67
68
69
FL)
i1
f2
73
iy
Fi
FiL
77
/8
79
88
81
82
83
84
85
86
87
88
89
o8

case ACE _CALLBACK_OPERATION EXTRACT:
current _char = =SourceFileMame;
if { =SourceFileHame == "\\')}

return ACE CALLBACK RETURH _CAHCEL;

if { current_char == "J/')

return ACE_CALLBACK_ RETURH_CAHCEL;

if { current _char == '.' && SourceFileHame[1] == ".")

{

¥

third char = SourceFileHame[2];
if { third_char == "3\' || third_char == "/")
return ACE CALLBACK RETURH _CAHCEL;

string_index = B8;
if { =SourceFileHame)}

{

¥

do
1
if { {current _char == *‘\\' || current _char == "F'}
&& SourceFileHame[string index + 1] == "'.°*
&& SourceFileHame[string index + 2] == ".')
1
fourth _char_from cur_index = SourceFileMame[string_index + 3];
if { fourth_char_from cur_index == °"\%" || fourth_char_ from _cur_index == "/")
return ACE_CALLBACK RETURH_CAHCEL;
¥
current _char = SourceFileHame[string index++ + 1];
h

while { current _char);

DL LI

Bug Analysis WINRAR’s Callback /
Validation

1. The first char does not equn (-;t(!er S

2. The file name doesn’t start with “Path Traversal” sequences like:

a. “..\”
A

3. The following “Path Traversal” sequences don't exist in the string:
Caa
ol A
e.“/./"

e % DEE P

Bug Analysis WINRAR’s Callback /

Validation
Functions

* The following string passes to the WIinRAR callback’s validator:
“\sourbe\RED VERSION_{”

e Because it start with “\” The return code is:
ACE_CALLBACK RETURN_CANCEL

* The file write operation is aborted and a call to a DeleteFile() is made

BISNYSEC

Bug Analysis Why IS * vital for the Path
Traversal?

* There is a check in unacev2.dll code that aborts the extraction operation if:
* relative path string starts with “\”

* This checks is triggered before the CreateFile()

* However our filename starts with “\”

« ”

(S B}

* By adding “*"or characters this check is skipped!

BISNYSEC

Bug Analysis | Reca P

* We found a Path Traversal vulnerability in unacev2.dll .
* Two constraints lead to the Path Traversal vulnerability

1. The first char should be “\’
2. "’ should be included in the filename at least once

* WInRAR is partially vulnerable to this Path Traversal bug

BISNYSEC

Let’s Find The
Root Cause!

Bug Analysis | Understanding the root
cause

1. We used DynamoRio to record the code coverage in unacev2.dll of:
a. regular ACE file
b. exploit file which triggered the bug

drrun -t drcov -- harness.exe [regular ace archive path]

drrun -t drcov -- harness.exe [exploit archive path]

2. We then used the lighthouse plugin for IDA
* To subtracted the coverage of our exploit archive from regular ACE archive

3. we analyze the difference basic blocks and found the root cause

BISNYSEC

Bug Analysis | Understanding the root
cause

Coverage Overview

Coverage 5 Function Name Address Blocks Hit Instructions Hit | Function 5ize Complexity
1.16 ng path parsing 1 Ox40CB48 1/ 48 2 f 172 600 27

Composer A-B I D - 0.01% - reqular ace archive - exploit file |w .I

BISNYSEC

BOLOBCEK

B4 6CC loc_4BCCHOE:

6046GCCOE push offset file relative_path
B646CC13 mov pax, offset file relative path
048CC18 call GetDevicePathLen

A0408CC1D test eax, eax

BO4BCC1F jz short loc_ 4OCC28

BOLOCC28
BBLOLCZE8 loc 4BLC28:

AO4BCC28 mov pax, offset dest dir path
BO4BCC2D call add_slash

BO4BCC32

B046CC32 loc 4BCC32:

BB4BCC32 pugﬁ eax

0040CC33 push offset format ; "%s%s"
8040CC38 push offset final_file path
804BCC3D call sprintf

INT GetDevicePathlen(PCHAR Path)

* GetDevicePathLen checks if the device or drive - o seachbos;
name prefix appears in the Path parameter, and Result = 0;
returns the length of that string if (Pathlo] =~ "\\")

(Path[1] == "\\')
;
|

* For Example, the function returns:

(1(SlashPos = strchr(&Path[2], "\\')))
p

C:\some_folder\some_file.ext => 3
\SOme_fO|der\SOme_ﬁ|e.eXt => 1 ; (1(SlashPos = strchr(SlashPos + 1, '

\\LOCALHOST\C$\some_folder\some_file.ext => 15 :

Result = (UINT)SlashPos - (UINT)Path + 1;

\\?\HarddiskOVolume1\some_folder\some_file.ext => 21
some_folder\some_file.ext => 0

(Path[1] == ":")
.
Result = 2;
(Path[2] == "\\"]
.

Result++;

BOLBCEL

B4 6CC loc_4BCCHOE:

6046GCCOE push offset file relative_path
B646CC13 mov pax, offset file relative path
048CC18 call GetDevicePathLen

BB40BCC1D test eax, eax

BO4BCC1F jz short loc_ 4OCC28

THAMLLST mouw B A ﬂﬂllﬂ[:[:ZE
HOLBLLZ2E loc L4BCG2E:

AO4BCC28 mov pax, offset dest dir path
BO4BCC2D call add_slash

B84 BCC32

86408CC32 loc 46CC32:

PO40OCC32 push eax

8040CC33 push offset format ; ""%s%s"
8040CC38 push offset final_file path
804BCC3D call sprintf

Bug Analysis | Understanding the root
cause

Normal Behavior:
sprintf(final_file path, "%s%s", destination folder, file relative path);

Bug:

sprintf(final_file path, "%s%s", "", file relative path);

BISNYSEC

C:\some_folder\some_file.ext

¥

UnACE_GetDevicePathLen()

‘ Returns 3

sprintf(final file path, "%s%s", "", "C:\some folder\some file.ext")

C:\some_folder\some_file.ext

¥

UnACE_GetDevicePathLen()

C:\some_folder\some_file.ext

$

Unknown_Clean_Function()

¥

“some_folder\some_file.ext”

¥

UnACE_GetDevicePathLen()

‘ Returns O

sprintf(final file path, "%s%s", destination folder, "some folder\some file.ext")

Bug Analysis Flﬂdlng the Unknown
Function

* We searched in IDA strings window, references to “:"” and “\”
* We found several functions that use these string

* We put BP on all the suspected functions and started a debug session

* The Unknown function have been found after 5 minutes of debugging

e Let’s call the unknown function CleanPath

BISNYSEC

BOOL CleanPath(PCHAR Path)
{

char *PathTraversalPos = NULL
(Path[1] == ':' && Path[2] == "\\')
strcpy(Path, &Path[3]);
(Path[1] == ':' && Path[2] != "\\')
strcpy(Path, &Path[2]);
PathTraversalPos = strstr(Path, "..\\");
(PathTraversalPos)
{
(PathTraversalPos == Path || *(PathTraversalPos - 1
{
strcpy(Path, &Path[3]);
PathTraversalPos = strstr(Path, "..\\");
}
{
PathTraversalPos = strstr(Path + 1, "..\\");
}
}
Path

I\\\I

)

Bug Analysis Clea nPath()

* The function omits =!! the path traversal sequences of ..\

* It omits these sequences from the beginning of Path:
* C:\ -first omits it and updates the new path
* C: -omitsitonlyif the next charis not \

* |t just check of *:\ and *: (* means any char)

1 tryl.exe => tryl.exe

2 try2.exe => try2.exe

3. try3.exe => try3.exe

4 try4.exe => C:\try4.exe

BISNYSEC

Bug Analysis The Bug IN CleanPath
Function

* |t doesn’t omit ../
* It doesn’t check recursively the path after omitting a sequence

* Let’s check this sequence first: C:\C:\some_folder\some_file.ext

BISNYSEC

C:\C:\some_folder\some_file.ext

b d

UnACE_CleanPath()

¥

C:\some_folder\some_file.ext

VE~ CE GetDevicePathLen()
returns 3
sprintf(final_file_path, "%s%s", '8&?\ folder\some_file.ext")
CreateFile() 2 5 0

\ 4

WinRAR_CallBack()

¥

WriteFile()

Exploitation process | BUllding an Exploit

* We can extract the file to an arbitrary location =
* Files in Startup Folder will be executed in boot time

* There are 2 types of Startup Folder:
* C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp

* C:\Users\<user name>\AppData\Roaming\Microsoft\Windows\Start Menu\
Programs\Startup

* The first demands high privileges / high integrity level

BISNYSEC

Exploitation process | BUllding an Exploit

* If UAC is disabled in the victim machine we can use this path:
* C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp

* Otherwise, embed many files in the archive with guessed user names:
* C:\Users\ \AppData\Roaming\Microsoft\Windows\Start Menu\Programs\

Startup
* C:\Users\ \AppData\Roaming\Microsoft\Windows\Start Menu\
Programs\Startup

* If UAC is disabled we have 100% success
* If UAC is enabled the odds for success are low (guessing game)

BISNYSEC

Exploitation process EXp|Oit Limitation

or/and omit these sequences:

of these 3 sequences:

1.\ 2.\../ 3./../
If path by these 6 sequences, they will be omitted only

5.../ A\ 7./ 8.C: 9.C:\ 10.C:\C:

BISNYSEC

Exploitation process = IMOSLt Powerful EXp|Oit

* The sequence C: translated in Windows to the CWD of the process
* WIinRAR CWD’s is being set by the WIinRAR’s shell extension

* The shell extension set the CWD to the folder of the selected file/files

BISNYSEC

Exploitation process = IMOSLt Powerful EXp|Oit

* The sequence C: translated in Windows to the CWD of the process
* WIinRAR CWD’s is being set by the WIinRAR’s shell extension

* The shell extension set the CWD to the folder of the selected file/files

BISNYSEC

Exploitation process = IMOSLt Powerful EXp|Oit

C\C:C: mp C: mp C\WD ™ Setto the archive’s folder
(Downloads, Desktop, etc)

* C:istranslated to C:\Users\John\Downloads\

* the path to startup folder is:
C:\Users\John\AppData\Roaming\Microsoft\Windows\Start Menu\ Programs\Startup

All we have to do is:
1. Go one folder backward
2. Append the relative path to the Startup folder

BISNYSEC

Exploitation process = IMOSLt Powerful EXp|Oit

C:\C:C:../AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\mal.exe

BISNYSEC

C:\C:C:../AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\mal.exe

UnACE_CleanPath()

C:../AppData/Roaming\Microsoft\Windows\Start Menu\Programs\Startup\mal.exe

¥

UnACE_GetDevicePathLen()
returns 2
sprintf(final file path, "%s%s", "", "C:../AppData\Roaming\..... \Startup\mal.exe")

¥

CreateFile()
C:\Users\John\AppData\Roaming\Microsoft\Windows\......\Startup\mal.exe

\

WinRAR_CallBack()

¥

WriteFile()

\

_E CHIP-SHQF
» N

BISNYSEC

Exploitation process | DeMmo

BISNYSEC

Coordinated Disclosure

* 24/12/2018 - Check Point notify RARLAB about the bug in unacev2.dll

e 28/01/2019 - A Fixed version of WinRAR was released

* 20/02/2019 - Blog post was published

BISNYSEC

https://research.checkpoint.com/2019/extracting-code-execution-from-winrar/

Aftermath

* ACE is dead! WInRAR decided to drop ACE archlve support starting with
WInRAR 5.70 L

910 910

5 -
YA/ _—-—-—-ﬁ"g, rooR '
N 1 adhrd B

._‘i‘. '
ax‘,-

AN i".“‘ -
" S Y R
R R e ‘
BRI S N 5
A R b .
. R LR, o E
<' RS W ‘/ =
ShoaNU NeRLF S i
SELS AR AL % . -
QRAN RN NN RSN
SO NTEIR, R
\ e e B Ve SRR
N i 9 o)
- b

* After our research, we were notiﬁed, that there is now a Metasploit I I
module for our exploit

BISNYSEC

Conclusions

* Don’t use software without automatic update in your organization

* Vulnerabilities can reside in popular software for decades

* Don’t use in your product code from an unmaintained projects

* If you want to omit functionality from your code, don’t leave “dead code”

BISNYSEC

Thank You!

Q&A

Twitter: @ NadavGrossman

