
Practical Approach For
“Lightway” Threat Modeling
Automation

Vitaly Davidoff

CISSP, CSSLP

 What is Threat Modeling
 Existing Methodologies
 Problems in common solution
 Lightway Threat Modeling “As a Code”
 Risks Based Security Tests Orchestration
 CI/CD Overview
 Tools
 Things to warry about

Agenda

 AppSec Domain Lead at Citi Innovation Lab
 15 years of experience as a developer
 5+ years experience in application security
 Martial Arts instructor

$WhoAmI

 Asset
 Threat
 Vulnerability
 Attack (or Exploit)
 Abuse Case
 Countermeasure (Security Control)
 Risk

Basic Security Terminology

Source: ISO 15408:2005

Basic Security Terminology

Source: MicroFocus

Secure SDLC Process

 A powerful way to identify potentials threats, visualize risks and
understand the security of the application

 A starting point to create robust security minded test plans
 The most reliable way to:

 Understand the security implications of system architecture
 Find business-process and system level security risks
 Ensure you get the most impact for your security investment

What Is Threat Modeling

 STRIDE
The STRIDE approach to threat modeling was introduced in 1999 at Microsoft, providing a
mnemonic for developers to find 'threats to our products'.

 PASTA
The Process for Attack Simulation and Threat Analysis (PASTA) is a seven-step, risk-centric
methodology.

 VAST
VAST is an acronym for Visual, Agile, and Simple Threat modeling. The underlying principle of this
methodology is the necessity of scaling the threat modeling process across the infrastructure and
entire SDLC, and integrating it seamlessly into an Agile software development methodology.

 Trike
The focus of the Trike methodology is using threat models as a risk-management tool. Within this
framework, threat models are used to satisfy the security auditing process.

Existing Methodologies

 What are we building?

 “what are we working on, now, in this sprint/spike/feature?”

 What can go wrong?

 What are we going to do about that?

 Did we do a good enough job?

Threat Modeling Process

Data Flow Diagram (DFD)

Process Flow Diagram (PFD)

“Think Like A Hacker!”

STRIDE – Identify Threats

Source: OWASP

Source: We45

Threat Modeling - Benefits

A Note About “Intuitive” Security

A Note About “Intuitive” Security

In simple words, at the early stages of
the SDLC:

 Every time there is a change in the
system’s architecture.

 After a security incident has occurred or
new vulnerabilities are introduced.

 As soon as the architecture is ready.

Threat Modeling And Secure SDLC

 Architects
 Security Specialists
 Business Analysts
 Developers
 Security Champions

Threat Modeling - Responsibilities

 Manual process, takes a lot of time
 Not propagated to Developers (in some cases, design defects opened)
 Updated on rare occasions (or not updates at all)
 Proceeded by security team (with very little help from R&D)
 Not integrated with DevOps model (CI/CD)
 Concentrated on Diagrams, not on countermeasures

“Agile and Microservices created a reality where Threat Modeling becomes a
bottleneck - heavily resource intensive, requires a full team of expensive
security professionals, takes up far too much time, and does not scalable…”

Common Problems

 Fosters speed
 Minimize human intervention
 Specification based frameworks
 Abstract the complexity away from the developer

 Make everything as a Code!

DevOps Automation

 CI/CD integration (security tests might be Threat Modeling based)
 Collaboration between different roles
 Iterative Threat Modeling
 Manageable Threat Modeling
 Just enough Threat Modeling

 Let ~80% of Threat Modeling be automated! 72 %

28 %

Automated
Manual

“Lightway” Threat Modeling As A Code

Step 1: Pattern* Definition (Example)

* Stephen De Vries - Threat Modeling With Architectural Risk Patterns - AppSecUSA 2016

Patterns Selection

From The Developer’s Point Of View

Source: ThreatPlaybook

Step 2: Threat Modeling YAML File

• Questionnaire
• Patterns
• Integrate with TM

Management tool

Survey

• Generate Yaml files
• Insert into Source

repository
• Test cases definitions
• Security controls list

TM code
Generation • Run Security Pipeline

• Tests list adopted to
concreate feature

Security
Tests

• Save reports
• Calculate Security

Coverage level

Reporting
and Metrics

Step 3: Risk Based Security Test Orchestration

 Approval Gate will check
Security Test coverage and
automatically approve push
to production if security
criteria achieved

 Deploy stage will run
parallel Security Test
pipeline (Asynchronies)

YAML

 Process will be triggered by “Security Test” step as part of Build stage
 Pull Threat Modeling process from Git (If not exists – process will be stopped! As a Gate)
 Run Security test pipeline (as parallel to functional pipeline)

 During any “final” stage (post-functional tests)
 Validate if security tests flow finished
 Check security coverage (As a Gate)
 If vulnerabilities found – open tickets inside defect management system (Jira)

 During release approve stage
 Automatically approve! If has a good coverage and suitable vulnerabilities score
 Manual approve only need if security thresholds violated

Step 4: CI/CD Integration (Example)

 Coverage calculated by automation tool
 Ticket should be opened automatically with all context needed
 Report contains all tests and findings in relation to Threat Modeling

use cases

CWE TM FISMA OWASP GDPR PCI HIPPA NIAP FFIEC

Coverage Review

 Based on OWASP ASVS v2 or other standards
 Part of feature onboarding
 Responsibility moved to R&D
 Integrated part of CI/CD flow
 Managed by security specialists

 Template based approach!

Generic Threats

HTTP Threats

SOAP
Threats

REST
Threats

JSON
Threats

GraphQL
Threats

Main Points (Summary)

 Scope – Feature/User story
 No single framework exists
 No Threat Modeling orchestration specification
 Evaluation plan (synchronies vs asynchronies)
 Integrate manual Threat Modeling process be part of orchestration

Thinks To Warry About

 ChatOps Slak – Uses as semi-automated check list questioner
 ThreatPlaybook – Automation for Threat Modeling process and documents
 ThreatModeler – Threats generation based on DFD’s
 Jenkins – CI/CD pipeline or Security Pipeline
 Robot – Security Pipeline
 BDD – Security Test (behavior driven)
 Jira – Features and Defects Management system
 IriusRisk – Management framework and Threat Modeling automation
 Orchestron – Management Tool
 Security Compass – Management Tool
 ZeroNorth – tests orchestrator and reports management system

Toolset (Example)

Thank You!

vitaly.davidoff@citi.com
LinkedIn: https://www.linkedin.com/in/vitaly-davidoff-07039a1

