Vitaly Davidoff
CISSP, CSSLP <

IN-DERTH SECURITY.

PISSESEC

What is Threat Modeling

Existing Methodologies

Problems in common solution

Lightway Threat Modeling “As a Code”
Risks Based Security Tests Orchestration
C1/CD Overview

Tools

Things to warry about

PISSESEC

AppSec Domain Lead at Citi Innovation Lab
15 years of experience as a developer

5+ years experience in application security
Martial Arts instructor

Basic Security Terminology BISSESEC

Asset

Threat
Vulnerability
Attack (or Exploit)
Abuse Case

Countermeasure (Security Control)
Risk

Basic Security Terminology

value
[Owners wish to minimise
e reduce
Countermeasures
that may that may
be reduced by possess
may be aware of e
Vulnerabilities
leading to
Yy
[Threat agents J that exploit —Ol Risks]
to
e that increase I y
UL >[Threats to Assets]
wish to abuse and/or may damage

MINNYSEC

Source: I1SO 15408:2005

Secure SDLC Process BISSAESEC

Design guidelines
Design review
Threat Modeling
Attack surface
Analysis/AS5a

Secure coding

Basic security QA

Automatic Security Tools
Security docurnentation

Design

Requirements
& planning

=i 7

Education Release Response

Secure coding Responsible disclosure

SOL for managers Initial Ih.reat assessment Security Risk Assessment Security inteligence

Security QA Secunty Plan Comprehensive security testing Final security review Vulnerability analysis
Security for designers | Security Release Criteria Mitigation strategies Release Sign-off Security updates & patches
& champions Compliance requirements | Rau cause anatysis

Source: MicroFocus

PISSESEC

A powerful way to identify potentials threats, visualize risks and
understand the security of the application

A starting point to create robust security minded test plans
The most reliable way to:
Understand the security implications of system architecture

Find business-process and system level security risks
Ensure you get the most impact for your security investment

PISSESEC

» STRIDE
The STRIDE approach to threat modeling was introduced in 1999 at Microsoft, providing a
mnemonic for developers to find ‘threats to our products'.

» PASTA
The Process for Attack Simulation and Threat Analysis (PASTA) is a seven-step, risk-centric
methodology.

» VAST

VAST is an acronym for Visual, Agile, and Simple Threat modeling. The underlying principle of this
methodology is the necessity of scaling the threat modeling process across the infrastructure and
entire SDLC, and integrating it seamlessly into an Agile software development methodology.

» Trike

The focus of the Trike methodology is using threat models as a risk-management tool. Within this
framework, threat models are used to satisfy the security auditing process.

Threat Modeling Process BISAESEC

What are we building?

“what are we working on, now, in this sprint/spike/feature?”
What can go wrong?
What are we going to do about that?

Did we do a good enough job?

Data Flow Diagram (DFD)

Application
ff Responses

HTTPs ;
Responsés
!

__
-

-

au|

\/

Authentication
Credential
Store

(faepunog J1an1ag gapp/iesn) ZINA

(frepunog J1aniag gq g ddy j1aa19g gapn) jeud

-
-
~
-
-
-

s
v /
s 4 FA RBA ;
!" Application Fraud !
HTTPs Calls/(.do) Detection)/
userl | ~Request / J \ XML/HTTPS /
i
Browser \ * - Financial

XML/HTTPS

SQL Query Call/
Auth Data JDBC

/Transactions (ACH, wires
external transfer)

¥iomieN pejoulsey

_~~ {A1epunog JenJag |e1ouRUI4/MeAIeS g0 B d

BINNYSEC

RIS EC
Process Flow Diagram (PFD) DEEP

/ - Payment
o — | 2
]t_,m@;_;.;i_ a
T oE ; §,-ff:_gj_'f_ P
“‘# I S B
::n! - Payment

“Think Like A Hacker!” BISSAESEC

THAT AWKWARD MOMENT\WHEN

YOU'VE ALREADY Slllll 'WHAT2)" THREE
TIMES N STIll HAVE NO IDEA WHIIT THE

STRIDE - Identify Threats BIFAESEC

Threat Property we want
poofing Authentication
ampering Integrity

epudiation Nonrepudiation

nformation Disclosure Confidentiality

enial of Service Availability

levation of Privilege Authorization

HTTPs
User/ /‘Request
Browser ’
!
HTTPs ;

Responses
!

Message

SQL Query Call/
Auth Data JDBC

N/

Authentication
Credential
Store

(fiepunog seates gapnesn) Zna

(faepunog Jamiag gq 1§ ddy j1emiag qapn) |eussju]

/
-
-
#
-
#
-
-
-
-
-
-

Financial
/Transactions (ACH, wires
external transfer)

}IOMIBN PejaMISay

Attacker may ba
able to read othar

users' messages

‘

Usar may not have

logged off on a shared
computer

Diata validation may
fail, allawing SOL
inpection

Authorization may fail,
allowing
unautharizasd access

!

Browser cache may
cantain contants of

message

v

v

Implarnant data
validation

Implement
authonzation checks

Implement anti-

caching HTTP

neaders

If risk iz highs, usa SSL

BISSESEC

Source: OWASP ..

Threat Modeling - Benefits BISAESEC

BENEFITS OF THREAT MODELING

Source: We45

A Note About “Intuitive” Security MINESEC

A Note About “Intuitive” Security BIASESEC

Deadliest American

by Average Annual Deaths

b g .. Nl s
Deer and certain flying insects are responsible

L for the highest number of deaths in the US.

Deer

Bee/Wasp/Hornet “— 58
Dog =" 28
cow IE=- 20
Horse ‘E— 20

== 120

In simple words, at the early stages of
the SDLC:

Every time there is a change in the
system’s architecture.

After a security incident has occurred or
new vulnerabilities are introduced.

As soon as the architecture is ready.

PISSESEC

Relative cost to fix defects over phases of development

SYSTEM DESIGN CODE + UNIT TEST

INTEGRATION

ACCEPTANCE TEST

IN OPERATION

Architects

Security Specialists
Business Analysts
Developers

Security Champions

PISSESEC

Manual process, takes a lot of time

Not propagated to Developers (in some cases, desigh defects opened)
Updated on rare occasions (or not updates at all)

Proceeded by security team (with very little help from R&D)

Not integrated with DevOps model (CI/CD)

Concentrated on Diagrams, not on countermeasures

“Agile and Microservices created a reality where Threat Modeling becomes a
bottleneck - heavily resource intensive, requires a full team of expensive
security professionals, takes up far too much time, and does not scalable...”

DevOps Automation BISISESEC

~ Fosters speed

~ Minimize human intervention

~ Specification based frameworks e
~ Abstract the complexity away from the developer o=

” Make everything as a Code! Coud Depicymonts os Gpce

Container Orchestration as Code

Security as Code

“Lightway” Threat Modeling As A Code BISAESEC

CI/CD integration (security tests might be Threat Modeling based)
Collaboration between different roles
lterative Threat Modeling

Manageable Threat Modeling

Just enough Threat Modeling

Vv V V VYV V

" Automated
[| ual

“ Let ~80% of Threat Modeling be automated!

Step 1: Pattern* Definition (Example)

"pattern": {

"class™: "HTTPAWA\WEB\\Service",
"id": "tmpgl34",
"name": "User/Pass Ruthentication against a Service",

"parent id": "tmpgll2z",
"threats™: {

Lhen L {
"tests": "SAST", "SCA", "DAST"
"description™: "Dictionary attack against username using common password”
"contramesures": {
"groups": [
"Implement password quality checks","Rate limit connections from the same IP address"™,
1
}
br
I'ITGzl'I: {
"tests": "DAST"
"description™: "Legitimate users cannot access service because of Dos"
"contramesures": {
"groups": [

"Enable up-stream DoS prevention®

1

* Stephen De Vries - Threat Modeling With Architectural Risk Patterns - AppSecUSA 2016

BINNYSEC

"Require the use of 2FA"

Patterns Selection

BISSESEC

Component: Web Application - Server side

+ =
cmmn[Dﬁﬂﬂjls Tm z‘-l! L 8 on ol B e B e P e T nme sn B il o gt e e o o o s [. o e e T s [T, 1 o s L T]
B3 smart Home - 2
I What technologies are used fol
& Toolbox x || %5° Diagram @ Security... i (@oe) x .
Apache g
et Q T Filter : Diagram
NET
Kay Managemant: Ensure that any
m, O ; E ocret key it protected from
I i “ ' ' c&m l . = AWS Cloud unauthorized access [l
f—— Cebvery - p..'::‘.'; us m TLS: Uise TLS f
6 ¢ or All Login Pages and All
% Authenticated Pages
= Java Web Contalner “; [4 B
A e .] use ss. B
Javascript (on tha server) WA, TN . @
“ ' b 4 i Ensuring per-packet authenticity and
Ng‘l\! ‘9’ h Ll Satellite Intagrity.
Dativase Sefings Traasder ACH = Smart Home -
Fand Trasiifer '
PHE W Authenticty and integrity of Extensive
| ‘ 9 Telec Wt Authentication Protagol Ovir LAN
iy 0 H am EAPOL messages
Py sn;mnu Aboul Us Cokculsle URL Q “FI w:‘m Network "
af L T
Fuby ' Cable b Do ping & piie-to-piir based
‘ e ' Madem 1 1A authentication mecel. [
] -+ *.I.[
WhICH Servers are In use? W W ow Gateway Computer 5 I mucycle passwords [l
EWive i o Lagrop %
Jeity .. é o v/ 0 l swrict Password Pobey [l
, Saet
ot
JBoss Wikl Chactout C‘M;‘"' Cwivie Ean hm. Devices Implement a password throttiing
€ Thread. e mechanism
» Tomcal a
$ - . ? Do not reuse local administrator
Home Accownt Frocect Caksog BCLOUNE PASIMOrGS ACFOS Systems
W
§ « » O o b
W Back Bwihmt B IoT thing & - | tnnulvilidltldn.
colffes pot Smart Sensors
0 gﬂ' ! Door & I Generic Errar Pages [l
- Lacks
L] [[T Mod#y
Chard

| . Paramaterized Queries I =

From The Developer’s Point Of View BISIEHSEC

DICTIONARY AT TACK!

x 7

Step 2: Threat Modeling YAML File MYNYSEC

login_user: #this is the short_name for the User Story/Functionality
description:
As an employee of the organization,
I would like to login to the Expense Management application to submit and upload e>
abuse_cases: # The Key for all abuse cases under the User Story/Functionality
external_attacker_account_takeover: #unique name for Abuser Story
description: As an external attacker, I would compromise a single/multiple user ¢
threat_scenarios: # Key for all Threat Models under Abuser Story
sql injection user account access: #Unique Threat Model Name
description: External Attacker may be able to gain access to user accounts by
severity: 3 #value from 0-3 @ is Llowest on severity, and 3 is High Severity
cwe: 89,90 #required CWEID if you want to correlate and map to vulnerabilitie
cases: #linked test cases (optional)
- sql_injection_auto #the same name as the ones 1in security_tests
- sql_injection_manual
- sql_injection_sqlmap
- generic_error_messages
end user weak password:
description: External attacker may be able to bypass user authentication by ¢
severity: 2
cwe: 521
cases!:
- default_passwords

- bruteforce_login

Source: ThreatPlaybook

Step 3: Risk Based Security Test Orchestration BISISESEC

TM code
'+ Questionnaire A (Generation

* Patterns

Reporting
/+ Run Security Pipeline\ and Metrics

* Tests list adopted to

* Integrate with TM * Generate Yaml files concreate feature * Save reports
Management tool * Insert into Source * Calculate Security
repository Coverage level

* Test cases definitions

* Security controls list .
Y D \ Security
Tests

=

BISSESEC

Rugged Devops - AppSec Pipeline Template

YAML [¥

Thraai Ml}dal l"h.nunl Apsasamants AppSac Analyst

\ T False Posilive Removal
— Security Toel #1 ﬁ

P Security Tool #2 ——p E"’m—p.@._p \a
Trmlmr

L]
n— =

Sec Serv & Sery smm- ’
= Fb?queal - H:u.pjp Orchesbration b security Tool #3 Rﬂmﬂdﬂbn
—>
a
[e
e P GRC Tool

Securty Services

v Approval Gate will check
Security Test coverage and

o 1 1
Intake Triage Test
automatically approve push

Deploy stage will run
parallel Security Test » «
to production if security

pipeline (Asynchronies)
) Partal Auomaton criteria achieved
DFuture Automation

() Automation

Asran Weavar, CC Sraraflike 3.0

PISSESEC

Process will be triggered by “Security Test” step as part of Build stage
" Pull Threat Modeling process from Git (If not exists - process will be stopped! As a Gate)
" Run Security test pipeline (as parallel to functional pipeline)

During any “final” stage (post-functional tests)

" Validate if security tests flow finished
" Check security coverage (As a Gate)
* If vulnerabilities found - open tickets inside defect management system (Jira)

During release approve stage
" Automatically approve! If has a good coverage and suitable vulnerabilities score
" Manual approve only need if security thresholds violated

Coverage calculated by automation tool
Ticket should be opened automatically with all context needed

Report contains all tests and findings in relation to Threat Modeling
use cases

CWE

™

FISMA

OWASP

GDPR

PCI

HIPPA

NIAP

FFIEC

PISSESEC

REPORT SUMMARY
7 Findings January 24, 2019 at 1:51pm

Main Points (Summary) BISAESEC

YV V VYV VYV V

Based on OWASP ASVS v2 or other standards
Part of feature onboarding
Responsibility moved to R&D Generic Threats
Integrated part of CI/CD flow

Managed by security specialists JSON

HTTP Threats Threats

Ti late based h!
emplate based approac SOAP REST
Threats Threats

GraphQL
Threats

PISSESEC

Scope - Feature/User story

No single framework exists

No Threat Modeling orchestration specification

Evaluation plan (synchronies vs asynchronies)

Integrate manual Threat Modeling process be part of orchestration

» ChatOps Slak - Uses as semi-automated check list questioner

~ ThreatPlaybook - Automation for Threat Modeling process and documents
~ ThreatModeler - Threats generation based on DFD’s

» Jenkins - CI/CD pipeline or Security Pipeline

» Robot - Security Pipeline

~ BDD - Security Test (behavior driven)

~ Jira - Features and Defects Management system

~ IriusRisk - Management framework and Threat Modeling automation
» Orchestron - Management Tool

» Security Compass - Management Tool

~ ZeroNorth - tests orchestrator and reports management system

BIAISEC

BISSESEC

Thank You!

vitaly.davidoff@citi.com
LinkedIn: https://www.linkedin.com/in/vitaly-davidotf-o7039a1

