HARZER ROLLER: LINKER-BASED INSTRUMENTATION FOR
ENHANCED EMBEDDED SECURITY TESTING

Katharina Bogad and Manuel Huber // firstname.lastname@aisec.fraunhofer.de

Reverse-Engineering and Offensive Oriented Trends Symposium, 28.11.2019

~ Fraunhofer

AISEC




FAHRPLAN

Motivation

A short introduction to the xtensa architecture and the ESP8266 processor
The Harzer Roller

Results

Demo

Conclusion & Future Work

\

Z Fraunhofer
AISEC



MOTIVATION

New class of devices: highly embedded, connected, ,smart” devices — Internet of Things
Software designed like hardware: not user upgradable
Also, often times lax coding standards

B Abused by Mirai, ...
B |oT platform vendors like Espressif or Arduino made building loT devices much more accessible

\

~Z Fraunhofer
AISEC



Motivation

B However: SDK may only comes in binary form
Hidden vulnerabilities
M Searching for Bugs in binary-only code is hard
Most methods rely on the presence of debug interfaces or an MMU
End goal: Apply black-box fuzzing, get as much state of a crash as possible
End goal 2: get CVEs.

\

Z Fraunhofer
AISEC



THE XTENSA ARCHITECTURE

32 Bit RISC architecture
16 and 24 Bit instructions
16 Bit = narrow encoding (ADDI.N, ...)
16 Registers: a0..a15
a0 = return value, al = stack pointer, a2...a5 arguments
All registers callee-save in gcc-1x106 calling convention
Highly configurable
Exceptions? Optional.
MMU? Optional.
DSPs? May be configured.

|
Z Fraunhofer
AISEC



Exceptions on xtensa

B Hard-coded exception handlers in the system ROM
B Special registers are used for storing exception information
Virtual address that resulted in an exception

Exception number / reason

\

Z Fraunhofer
AISEC



Programming xtensa

B Arithmetic, branches, etc as usual

Some narrow-encoded variants available

Hardware multiplication support is optional

No integer division, FP-division depends on floating point option
B Only near jumps: next_pc = pc + signed imm8 + 4
B Loading constants is complicated

Word-aligned, encoded, only possible to load from pc — [4, 262141]

dangerous relocation: 132r: literal target out of range

\

Z Fraunhofer
AISEC



THE ESP8266

Beginner-friendly, inexpensive loT-Chip

Tensilica xtensa L106 32-Bit architecture

On-Board 802.11 b/g/n WiFi

WiFi Mesh with espnow

Max. current draw ~200mA under load, ~10-50mA while sleeping
No JTAG &

No debugging Interface ©

Barely any official documentation beyond a few examples &

\

~Z Fraunhofer
AISEC



ESP8266 SDKs

Non-OS and RTOS SDKs
Based on gcc-xtensa-Ix106 compiler and calling convention
No register windowing
B Somewhat MIT-Licensed
Espressif MIT License: Permissions are granted for use on esp8266 chips only
Uses third party Open Source technology: lwip, mbedytls, libjson

Still: most parts are binary-only!

\

Z Fraunhofer
AISEC



Other ESP8266 SDKs

M ESP8266 Open SDK: reverse engineered community effort
Unfinished
Mimics the Non-OS SDK
B Arduino ESP8266
For use with Arduino Studio
Internally using Non-OS SDK 2.2.x, but with custom heap implementation

This is the most popular SDK when googling for a tutorial
esp8266 tutorial

Q Al [] Videos [&) Images < Shopping

About 2.170.000 results (0,58 seconds)

~ Fraunhofer
AISEC



The SDK Problem

B Bugs in the SDK affect all devices, regardless of firmware
B Any remotely usable bug has a high impact
What if your building automation gets DoSed?
B Remote code execution can have disastrous consequences
What if your building automation DoSes something?
This has already happened: Mirai!

Targeted flash wear can physically destroy devices

\

Z Fraunhofer
AISEC



The Debugging Problem

® Limited Resources = Limited debugging facilities
No jtag, no gdbstub
Emulation only provides limited insight
Kammerstetter, Platzer and Kastner 2014: PROSPECT Partial emulation
Very slow, unsuitable for timing-critical code
B Muench et. al.: What you corrupt is not what you crash

Memory Corruptions are often times highly invisible, and get more invisible the more embedded
the device gets

\

Z Fraunhofer
AISEC



The Debugging Problem: How to deal with it

B I|dea: increase amount of debugging information by detecting more memory corruptions where they
happen

Introduce verbose aborts when detecting memory corruptions
Do so without requiring source code of binary-only available libraries

B [Instrument firmware using the linker

\

Z Fraunhofer
AISEC



THE HARZER ROLLER

Lat. Serinus canaria domestica
Domestic canary bird breed from germany
Mostly bred for its beautiful, melodious song

Also used in german mines to detect CO gas

And also the name-giver of our Method &

© Samuel Wiese, CC BY-SA

\

Z Fraunhofer
AISEC



THE HARZER ROLLER

B  Goals: Instrument Calls to and Returns from Subroutines

.. while being completely transparent to caller and callee

.. using as little memory and instructions as possible

.. without recompiling the libraries to contain instrumentation

.. without requiring the presence of a MMU
B Use the instrumentation to trace execution flow or check memory for corruption
B Split instrumentation in two:

Call-Path instrumentation

Return-Path instrumentation

~ Fraunhofer
AISEC



Call-Path Instrumentation

B Normal Execution flow:

" fct:

call fct
<

return

\

Z Fraunhofer

AISEC



Call-Path Instrumentation

Because flash space is tight, SDKs are usually compiled with ——ffunction-section

It's the linkers job to relocate the call in the final firmware image!

B We can tamper with the relocation information so the linker links instrumentation code instead of
the actual function

® We call this the Harzer Roller Call-Path Instrumentation

\

Z Fraunhofer
AISEC



Call-Path Instrumentation

B Rename the function, but not the relocation:

call fct

hr_fct:

return

\

Z Fraunhofer
AISEC



Call-Path Instrumentation

B Auto-generate instrumentation code for each function before linking:

call fct
<

ﬁ

fct:

jump hr_fct

>

hr_fct:

return

\

Z Fraunhofer
AISEC



Call-Path Instrumentation

B We can use stack space to preserve all registers we use in our instrumentation
B Function calls are possible, but may introduce endless loops

Instrumentation to printf() calls printf()

Workaround: call uninstrumented function directly
B Exemplary usage:

Call-Path tracing

Poor girl’'s UART strace

Set up Return-Path Instrumentation ©

\

Z Fraunhofer
AISEC



Return-Path Instrumentation

Unfortunately, for the return path we cannot abuse the linker
We also - in the general case — cannot just patch any return instructions as we cannot know where
the function returns once it's compiled

While gcc usually only emits one function exit, hand crafted assembly can do weird things

We also need to ensure that our instrumentation runs if memory gets corrupted

\

Z Fraunhofer

AISEC



Return-Path Instrumentation

B Due to the sparsely mapped address space, corrupt return addresses usually result in lllegal Instruction
Exceptions when jumped to

Using our Call-Path Instrumentation we can change the return address seen by the called function
We can modify it to contain a value that intentionally results in an lllegal Instruction Exception

By registering a custom exception handler we can introduce instrumentation code

We can recover from such an exception if we use the call-path instrumentation to build a call stack
This need special handling in multicore environments where tasks can switch CPU cores

In this case, we need to build one call stack per task

\

~ Fraunhofer
AISEC



Return-Path-Instrumentation

| hr_fct:
—f Ct: // do something
inc returnstack
- 1 fet move =returnstack, 1r
9 ¢ move Llr, Oxabababab
jump hr_fct
return

\

=
Slide 24 ~Z Fraunhofer
AISEC

© Fraunhofer



Return-Path-Instrumentation

| hr_fct:
—TCt: // do something
inc returnstack

move =returnstack, 1lr

call fct

move Llr, Oxabababab
—!
jump hr_fct -
jump @xabababab
| cmp Llr, @xabababab 1
: : lllegal Instruction!
jumpnz fail |
4 A v
move lr, =returnstack fail:
dec returnstack call print_fail
_1jump 1r hilt

\

Slide 25 ~Z Fraunhofer

© Fraunhofer AISEC



Return-Path Instrumentation

Return stack is a FIFO-Queue of information about the last called subroutine

Must save: real return address
M Optionally save additional metadata (at the cost of RAM):

Function name

Register state(s)

B Contents largely depend on the instrumentation

\

Z Fraunhofer
AISEC



IMPLEMENTATION ON THE ESP8266

Experiments ran with SDK 3.0 (git commit 2f9e0bb)
Little space available
Instrumentation code must be size-optimized
® Call- and Return-Instrumentation
M Be as transparent as possible
Unfortunately, we still need to overwrite one register
We can use the frame pointer (al5) for that as it isn't needed in the called function

B \We aim to open source this implementation

~ Fraunhofer
AISEC



Size improvements

Only little code of the call-path instrumentation actually depends on the function

Split the code into a portion that's emitted once per instrumented function and one part per
instrumentation

Using narrow-encoded functions we can squash the first down to 32 + len(function_name) Bytes
Function name gets written to the call stack to be dumped if overflow occurs
® Hand-crafted assembly goes long ways here

Also, care must be taken to not mess up the registers

\

~ Fraunhofer
AISEC



Registering the exception handler

No public APl available

However...

katharina@annaberg ~/ESP8266_NONOS_SDK-3.0/1d % cat eagle.rom.addr.v6.ld | grep exce
PROVIDE ( _xtos_set_exception_handler = 0x40000454 );
PROVIDE ( _xtos_unhandled_exception = 0x400dc44 );

B Winner-Winner, chicken dinner: Google  on st excapon, ance “

Q Al @ Maps [&Images [JVideos & News i More Settings  Tools

About 188 results (0,34 seconds)
Did you mean: xtos set_exception_handler

init.c

https://codesearch.isocpp.org » target_firmware » magpie_fw_dev » target ~
.. idle_task(); #if defined(PROJECT_MAGPIE) void fatal_exception_func() { // patch for
execption (void)_xtos_set_exception_handler(EXCCAUSE_UNALIGNED, ...

Add handler to RODATA branch - Issue #1676 - espruino ...
https://github.com > espruino » Espruino » issues

Jun 17, 2019 - grep 401072d espruino_esp8266_user1.Ist 401072d0 g F .iram0.text 0000001d
__wrap__xtos_set_exception_handler 401072b9: 000686 j ...

nodemcu-firmware/user_main.c at master - nodemcu ... - GitHub
https://github.com > nodemcu-firmware » blob » master » app » user» use... v

void __real__xtos_set_exception_handler (uint32_t cause, exception_handler_fn fn);. void
__wrap__xtos_set_exception_handler (uint32_t cause, ...

|

~ Fraunhofer

AISEC



Registering the exception handler

Unfortunately, this never worked as we thought it would.

The hardware-exception handler is in the closed-source ROM BLOB

So we applied black box testing

Looking at the RAM at runtime we found the exception handler table to be located at Ox3fffc000

Directly overwriting the first entry gave us low-level access to the exception handling ©

\

Z Fraunhofer
AISEC



Registering the exception handler

Obviously, we must register our custom handler before the first protected function returns
Idea: specify a master function and use call-path instrumentation to hook it and register our handler

The master function could be anything, as long as it is called at least once

What function to hook is hugely dependant on the instrumented functions
Application-Level code could be fine with user_pre_init

Some heavily relied functions (e.g. memory management) could need a very early hook function

\

~ Fraunhofer
AISEC



EVALUATION

Test program, XOR as a Service containing stack based buffer overflow
Two goals:
Call tracing using only the call path instrumentation

Stack integrity checking using the return path instrumentation

® Vulnerable part:
void ICACHE_FLASH_ATTR shell_tcp_recvcb (voidx arg , charx pusrdata, unsigned short
length)
{

struct espconnx pespconn = (struct espconnx) arg;
char xorbuf [20];
charx x;

ets_memcpy (xorbuf , pusrdata, length);

|
Z Fraunhofer
AISEC



DEMO

PACKETS |E|
CHIP WITH

[_EH PROPRIETARY

FIRMWARE

(e. g. \ZL.LJ.,ETOTH'

ANALYSIS CONTROLLER

— =] &= ';v

CHIP
CONTROLLER
DEVICE

\

~ Fraunhofer
AISEC



Size- and performance penalties

M Non-trivial size increase

Min. 32 byte per instrumented function

Additional space for instrumentation code

We have seen increases of up to 150% per archive (object file structures included)
B However, the performance overhead is somewhat constant

If no UART printing is involved, constant time can be achieved

Because of the limited architecture without branch prediction, time overhead can be calculated
for a specific instrumentation

\

~ Fraunhofer
AISEC



Limitations

B The Harzer Roller is no security mitigation
Overwriting the return address is not protected, a “good” address would never hit our handler
The instrumentation has to be tailored on a case-by-case basis; there is no general detect-it-all
Currently only single core, single thread is supported
B Flash size restrictions prevent us from instrumenting the whole firmware at once

esp8266 only supports up to 1024 KiB of IROM, regardless of SPI flash size

\

Z Fraunhofer

AISEC



FUTURE WORK

B Tooling to track found crashes, make them easily searchable and indexable

Track crashes against a variety of SDK versions

Database of object files in a given SDK to better understand the low-level connections
B Fuzzing environment to thoroughly test all public APl endpoints

Memory checker that detects overflows in malloc()ed memory

Fuzz based on implemented network protocols: DNS, 802.11, espnowy, ...
® Port our work to the ESP32 and other loT platforms

|
Z Fraunhofer
AISEC



CONCLUSION

Ability to inject more debug output capabilities
Only require object code, therefore able to instrument the binary-only SDK of the ESP8266

Used in fuzzing setup to capture crashes more local to the actual corruption

Open source our implementation in the near future

\

~Z Fraunhofer
AISEC



THANK YOU. QUESTIONS?

® Further Reading:

Muench et. al: What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded
Devices, https://doi.org/10.14722/ndss2018.23176

Corteggiani, Camurati and Francillon: Inception: System-Wide Security Testing of Real-World
Embedded Systems Software, ISBN: 978-1-939133-04-5

Kammerstetter, Platzer and Kastner: Prospect: Peripheral Proxying Supported Embedded Code
Testing, https://doi.org/10.1145/2590296.2590301

Song et. al: PeriScope: An Effective Probing and Fuzzing Framework for the Hardware-OS
Boundary, https:/dx.doi.org/10.14722/ndss.2019.23176

\

~Z Fraunhofer
AISEC


https://doi.org/10.14722/ndss2018.23176
https://doi.org/10.1145/2590296.2590301
https://dx.doi.org/10.14722/ndss.2019.23176

