
© Fraunhofer

HARZER ROLLER: LINKER-BASED INSTRUMENTATION FOR
ENHANCED EMBEDDED SECURITY TESTING

Katharina Bogad and Manuel Huber // firstname.lastname@aisec.fraunhofer.de

Reverse-Engineering and Offensive Oriented Trends Symposium, 28.11.2019

Slide 1

© Fraunhofer

FAHRPLAN

n Motivation

n A short introduction to the xtensa architecture and the ESP8266 processor

n The Harzer Roller

n Results

n Demo

n Conclusion & Future Work

Slide 2

© Fraunhofer

MOTIVATION

n New class of devices: highly embedded, connected, „smart“ devices – Internet of Things

n Software designed like hardware: not user upgradable

n Also, often times lax coding standards

n Abused by Mirai, …

n IoT platform vendors like Espressif or Arduino made building IoT devices much more accessible

Slide 3

© Fraunhofer

Motivation

n However: SDK may only comes in binary form

n Hidden vulnerabilities

n Searching for Bugs in binary-only code is hard

n Most methods rely on the presence of debug interfaces or an MMU

n End goal: Apply black-box fuzzing, get as much state of a crash as possible

n End goal 2: get CVEs.

Slide 4

© Fraunhofer

THE XTENSA ARCHITECTURE

n 32 Bit RISC architecture

n 16 and 24 Bit instructions

n 16 Bit = narrow encoding (ADDI.N, …)

n 16 Registers: a0..a15

n a0 = return value, a1 = stack pointer, a2…a5 arguments

n All registers callee-save in gcc-lx106 calling convention

n Highly configurable

n Exceptions? Optional.

n MMU? Optional.

n DSPs? May be configured.

Slide 5

© Fraunhofer

Exceptions on xtensa

n Hard-coded exception handlers in the system ROM

n Special registers are used for storing exception information

n Virtual address that resulted in an exception

n Exception number / reason

n …

Slide 6

© Fraunhofer

Programming xtensa

n Arithmetic, branches, etc as usual

n Some narrow-encoded variants available

n Hardware multiplication support is optional

n No integer division, FP-division depends on floating point option

n Only near jumps: next_pc = pc + signed imm8 + 4

n Loading constants is complicated

n Word-aligned, encoded, only possible to load from pc – [4, 262141]

n dangerous relocation: l32r: literal target out of range 🤬

Slide 7

© Fraunhofer

THE ESP8266

n Beginner-friendly, inexpensive IoT-Chip

n Tensilica xtensa L106 32-Bit architecture

n On-Board 802.11 b/g/n WiFi

n WiFi Mesh with espnow

n Max. current draw ~200mA under load, ~10-50mA while sleeping

n No JTAG 😕

n No debugging Interface 😕

n Barely any official documentation beyond a few examples 😕

Slide 8

© Fraunhofer

ESP8266 SDKs

n Non-OS and RTOS SDKs

n Based on gcc-xtensa-lx106 compiler and calling convention

n No register windowing

n Somewhat MIT-Licensed

n Espressif MIT License: Permissions are granted for use on esp8266 chips only

n Uses third party Open Source technology: lwip, mbedtls, libjson

n Still: most parts are binary-only!

Slide 9

© Fraunhofer

Other ESP8266 SDKs

n ESP8266 Open SDK: reverse engineered community effort

n Unfinished

n Mimics the Non-OS SDK

n Arduino ESP8266

n For use with Arduino Studio

n Internally using Non-OS SDK 2.2.x, but with custom heap implementation

n This is the most popular SDK when googling for a tutorial

Slide 10

© Fraunhofer

The SDK Problem

n Bugs in the SDK affect all devices, regardless of firmware

n Any remotely usable bug has a high impact

n What if your building automation gets DoSed?

n Remote code execution can have disastrous consequences

n What if your building automation DoSes something?

n This has already happened: Mirai!

n Targeted flash wear can physically destroy devices

Slide 11

© Fraunhofer

The Debugging Problem

n Limited Resources = Limited debugging facilities

n No jtag, no gdbstub

n Emulation only provides limited insight

n Kammerstetter, Platzer and Kastner 2014: PROSPECT Partial emulation

n Very slow, unsuitable for timing-critical code

n Muench et. al.: What you corrupt is not what you crash

n Memory Corruptions are often times highly invisible, and get more invisible the more embedded
the device gets

Slide 12

© Fraunhofer

The Debugging Problem: How to deal with it

n Idea: increase amount of debugging information by detecting more memory corruptions where they
happen

n Introduce verbose aborts when detecting memory corruptions

n Do so without requiring source code of binary-only available libraries

n Instrument firmware using the linker

Slide 13

© Fraunhofer

THE HARZER ROLLER

n Lat. Serinus canaria domestica

n Domestic canary bird breed from germany

n Mostly bred for its beautiful, melodious song

n Also used in german mines to detect CO gas

n And also the name-giver of our Method 😜

Slide 14

© Samuel Wiese, CC BY-SA

© Fraunhofer

THE HARZER ROLLER

n Goals: Instrument Calls to and Returns from Subroutines

n … while being completely transparent to caller and callee

n … using as little memory and instructions as possible

n … without recompiling the libraries to contain instrumentation

n … without requiring the presence of a MMU

n Use the instrumentation to trace execution flow or check memory for corruption

n Split instrumentation in two:

n Call-Path instrumentation

n Return-Path instrumentation

Slide 15

© Fraunhofer

Call-Path Instrumentation

n Normal Execution flow:

Slide 16

…
…
…
call fct
…
…
…

fct:
// do something
…
…
…
…
return

© Fraunhofer

Call-Path Instrumentation

n Because flash space is tight, SDKs are usually compiled with --ffunction-section

n It’s the linkers job to relocate the call in the final firmware image!

n We can tamper with the relocation information so the linker links instrumentation code instead of
the actual function

n We call this the Harzer Roller Call-Path Instrumentation

Slide 17

© Fraunhofer

Call-Path Instrumentation

n Rename the function, but not the relocation:

Slide 18

…
…
…
call fct
…
…
…

fct:
// do something
…
…
…
…
return

hr_fct:

© Fraunhofer

Call-Path Instrumentation

n Auto-generate instrumentation code for each function before linking:

Slide 19

…
…
…
call fct
…
…
…

hr_fct:
// do something
…
…
…
…
return

fct:
// instrumentation
// code
…
…
…
jump hr_fct

© Fraunhofer

Call-Path Instrumentation

n We can use stack space to preserve all registers we use in our instrumentation

n Function calls are possible, but may introduce endless loops

n Instrumentation to printf() calls printf()

n Workaround: call uninstrumented function directly

n Exemplary usage:

n Call-Path tracing

n Poor girl’s UART strace

n …

n Set up Return-Path Instrumentation 😜

Slide 20

© Fraunhofer

Return-Path Instrumentation

n Unfortunately, for the return path we cannot abuse the linker

n We also – in the general case – cannot just patch any return instructions as we cannot know where
the function returns once it’s compiled

n While gcc usually only emits one function exit, hand crafted assembly can do weird things

n We also need to ensure that our instrumentation runs if memory gets corrupted

Slide 21

© Fraunhofer

Return-Path Instrumentation

n Due to the sparsely mapped address space, corrupt return addresses usually result in Illegal Instruction
Exceptions when jumped to

n Using our Call-Path Instrumentation we can change the return address seen by the called function

n We can modify it to contain a value that intentionally results in an Illegal Instruction Exception

n By registering a custom exception handler we can introduce instrumentation code

n We can recover from such an exception if we use the call-path instrumentation to build a call stack

n This need special handling in multicore environments where tasks can switch CPU cores

n In this case, we need to build one call stack per task

Slide 23

© Fraunhofer

Return-Path-Instrumentation

Slide 24

…
…
…
call fct
…
…
…

hr_fct:
// do something
…
…
…
…
return

fct:
inc returnstack
move =returnstack, lr
move lr, 0xabababab
jump hr_fct

© Fraunhofer

Return-Path-Instrumentation

Slide 25

…
…
…
call fct
…
…
…

hr_fct:
// do something
…
…
…
…
jump 0xabababab

fct:
inc returnstack
move =returnstack, lr
move lr, 0xabababab
jump hr_fct

Illegal Instruction!
cmp lr, 0xabababab
jumpnz fail

move lr, =returnstack
dec returnstack
jump lr

fail:
call print_fail
hlt

© Fraunhofer

Return-Path Instrumentation

n Return stack is a FIFO-Queue of information about the last called subroutine

n Must save: real return address

n Optionally save additional metadata (at the cost of RAM):

n Function name

n Register state(s)

n ...

n Contents largely depend on the instrumentation

Slide 26

© Fraunhofer

IMPLEMENTATION ON THE ESP8266

n Experiments ran with SDK 3.0 (git commit 2f9e0bb)

n Little space available

n Instrumentation code must be size-optimized

n Call- and Return-Instrumentation

n Be as transparent as possible

n Unfortunately, we still need to overwrite one register

n We can use the frame pointer (a15) for that as it isn’t needed in the called function

n We aim to open source this implementation

Slide 27

© Fraunhofer

Size improvements

n Only little code of the call-path instrumentation actually depends on the function

n Split the code into a portion that’s emitted once per instrumented function and one part per
instrumentation

n Using narrow-encoded functions we can squash the first down to 32 + len(function_name) Bytes

n Function name gets written to the call stack to be dumped if overflow occurs

n Hand-crafted assembly goes long ways here

n Also, care must be taken to not mess up the registers

Slide 28

© Fraunhofer

Registering the exception handler

n No public API available

n However…

n Winner-Winner, chicken dinner:

Slide 29

katharina@annaberg ~/ESP8266_NONOS_SDK-3.0/ld % cat eagle.rom.addr.v6.ld | grep exce
PROVIDE (_xtos_set_exception_handler = 0x40000454);
PROVIDE (_xtos_unhandled_exception = 0x400dc44);

© Fraunhofer

Registering the exception handler

n Unfortunately, this never worked as we thought it would.

n The hardware-exception handler is in the closed-source ROM BLOB

n So we applied black box testing

n Looking at the RAM at runtime we found the exception handler table to be located at 0x3fffc000

n Directly overwriting the first entry gave us low-level access to the exception handling J

Slide 30

© Fraunhofer

Registering the exception handler

n Obviously, we must register our custom handler before the first protected function returns

n Idea: specify a master function and use call-path instrumentation to hook it and register our handler

n The master function could be anything, as long as it is called at least once

n What function to hook is hugely dependant on the instrumented functions

n Application-Level code could be fine with user_pre_init

n Some heavily relied functions (e.g. memory management) could need a very early hook function

Slide 31

© Fraunhofer

EVALUATION

n Test program, XOR as a Service containing stack based buffer overflow

n Two goals:

n Call tracing using only the call path instrumentation

n Stack integrity checking using the return path instrumentation

n Vulnerable part:
void ICACHE_FLASH_ATTR shell_tcp_recvcb (void* arg , char* pusrdata, unsigned short
length)
{

struct espconn* pespconn = (struct espconn*) arg;
char xorbuf [20];
char* x;
ets_memcpy (xorbuf , pusrdata, length);
…

}

Slide 32

© Fraunhofer

DEMO

Slide 33

© Fraunhofer

Size- and performance penalties

n Non-trivial size increase

n Min. 32 byte per instrumented function

n Additional space for instrumentation code

n We have seen increases of up to 150% per archive (object file structures included)

n However, the performance overhead is somewhat constant

n If no UART printing is involved, constant time can be achieved

n Because of the limited architecture without branch prediction, time overhead can be calculated
for a specific instrumentation

Slide 34

© Fraunhofer

Limitations

n The Harzer Roller is no security mitigation

n Overwriting the return address is not protected, a “good“ address would never hit our handler

n The instrumentation has to be tailored on a case-by-case basis; there is no general detect-it-all

n Currently only single core, single thread is supported

n Flash size restrictions prevent us from instrumenting the whole firmware at once

n esp8266 only supports up to 1024 KiB of IROM, regardless of SPI flash size

Slide 35

© Fraunhofer

FUTURE WORK

n Tooling to track found crashes, make them easily searchable and indexable

n Track crashes against a variety of SDK versions

n Database of object files in a given SDK to better understand the low-level connections

n Fuzzing environment to thoroughly test all public API endpoints

n Memory checker that detects overflows in malloc()ed memory

n Fuzz based on implemented network protocols: DNS, 802.11, espnow, …

n Port our work to the ESP32 and other IoT platforms

Slide 36

© Fraunhofer

CONCLUSION

n Ability to inject more debug output capabilities

n Only require object code, therefore able to instrument the binary-only SDK of the ESP8266

n Used in fuzzing setup to capture crashes more local to the actual corruption

n Open source our implementation in the near future

Slide 37

© Fraunhofer

THANK YOU. QUESTIONS?

n Further Reading:

n Muench et. al: What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded
Devices, https://doi.org/10.14722/ndss2018.23176

n Corteggiani, Camurati and Francillon: Inception: System-Wide Security Testing of Real-World
Embedded Systems Software, ISBN: 978-1-939133-04-5

n Kammerstetter, Platzer and Kastner: Prospect: Peripheral Proxying Supported Embedded Code
Testing, https://doi.org/10.1145/2590296.2590301

n Song et. al: PeriScope: An Effective Probing and Fuzzing Framework for the Hardware-OS
Boundary, https://dx.doi.org/10.14722/ndss.2019.23176

Slide 38

https://doi.org/10.14722/ndss2018.23176
https://doi.org/10.1145/2590296.2590301
https://dx.doi.org/10.14722/ndss.2019.23176

