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Who am I?

Background

● Computer Science Bachelor (Federal 
University of Paraná, Brazil, 2015).

● Machine Learning Researcher (Since 
2015).

● Computer Science Master (Federal 
University of Paraná, Brazil, 2017).

● Computer Science PhD Candidate 
(Federal University of Paraná, Brazil).

Research Interests

● Machine Learning applied to 
Security.

● Machine Learning applications:
○ Data Streams.
○ Concept Drift.
○ Adversarial Machine Learning.
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Motivation, the problem, initial concepts and our work.



The Problem

● Malware Detection: growing research field.
○ Evolving threats.

● State-of-the-art: machine learning-based 
approaches.
○ Malware classification in families;
○ Malware detection;
○ Dense volume of data (data stream).

● Arms Race: attackers VS defenders.
○ Both of them have access to ML.
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The Problem

● Defenders: developing new classification models to overcome new 
attacks.

● Attackers: generating malware variants to exploit the drawbacks of 
ML-based approaches.

● Adversarial Machine Learning: techniques that attempt to fool models by 
generating malicious inputs.
○ Making a sample from a certain class being classified as another one.
○ Serious problems for some scenarios, like malware detection.
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Adversarial Examples
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Adversarial Examples

● Image Classification: adversarial image should be 
similar to the original one and yet be classified as 
being from another class.

● Malware Detection: adversarial malware should 
behave the same and yet be classified as goodware.

● Challenge: automatically generating a fully functional 
adversarial malware may be difficult.
○ Any modification can make it behave different or not work.
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Our Work: How did everything start?

● Machine Learning Static Evasion 
Competition: modify fifty malicious 
binaries to evade up to three open 
source malware models.

● Modified malware samples must 
retain their original functionality.

● The prize: NVIDIA Titan-RTX.
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https://www.endgame.com/blog/technical-blog/machine-learning-static-evasion-competition
https://www.endgame.com/blog/technical-blog/machine-learning-static-evasion-competition


Our Work: What did we do?

● We bypassed all the three models creating modified versions of the 50 
samples originally provided by the organizers.

● Implemented an automatic exploitation method to create these samples.
● Adversarial samples also bypassed real anti-viruses as well.
● Objective: investigate models robustness against adversarial samples.
● Results: models have severe weaknesses so that they can be easily 

bypassed by attackers motivated to exploit real systems.
○ Insights that we consider important to be shared with the community.
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The Challenge
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Rules, dataset and models.



The Challenge: How did it work?

● Fifty binaries are classified by three 
distinct ML models. 

● Each bypassed model for each 
binary accounts for one point (150 
points in total).

● All binaries are executed on a 
sandboxed environment and must 
produce the same Indicators of 
Compromise as the original ones.

● Our team figured among the 
top-scorer participants.
○ Second position!
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Dataset: Original Malware Samples

● Fifty PE (Portable 
Executable) samples of 
varied malware families for 
Microsoft Windows.
○ Diversified approaches to 

bypass sample’s detection.

● VirusTotal & AVClass: 21 
malware families.

● Real malware samples 
executed in sandboxed 
environments.
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https://www.virustotal.com/gui/home
https://github.com/malicialab/avclass
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Corvus: Our Malware Analysis Platform
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Corvus: Report Example



Machine Learning Models: LightGBM

● Gradient boosting decision tree 
using a feature matrix as input.

● Hashing trick and histograms 
based on binary files 
characteristics (PE header 
information, file size, 
timestamp, imported libraries, 
strings, etc).
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Machine Learning Models: MalConv

● End-to-end deep learning model using 
raw bytes as input.

● Representation of the input using an 
8-dimensional embedding 
(autoencoder).

● Gated 1D convolution layer, followed by 
a fully connected layer of 128 units.

● Softmax output for each class.
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Machine Learning Models: Non-Negative 
MalConv

● Identical structure to MalConv.
● Only non-negative weights: force the 

model to look only for malicious 
evidences rather than looking for both 
malicious and benign ones.
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Dataset used to Train the Models

● Ember 2018 dataset.
● Benchmark for researchers.
● 1.1M Portable Executable (PE) 

binary files: 
○ 900K training samples; 
○ 200K testing samples.

● Open Source dataset:
○ https://github.com/

endgameinc/ember
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https://github.com/endgameinc/ember
https://github.com/endgameinc/ember
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Corvus: Classifying Samples Submitted Using Machine Learning Models



Biased Models?

● How does these models perform when classifying files of a pristine 
Windows installation?

● Raw data: high False Positive Rate (FPR) when handling benign data.
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FileType
False Positive Rate (FPR)

MalConv Non-Neg. MalConv LightGBM

EXEs 71.21% 87.72% 0.00%

DLLs 56.40% 80.55% 0.00%
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Model’s Weaknesses
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Series of experiments to identify model’s weaknesses.



Appending Random Data

● Generating growing chunks of 
random data, up to the limit of 
5MB defined by the challenge.
○ MalConv, based on raw data, is more 

susceptible to this strategy.
○ Severe for chunks greater than 1MB.
○ Some features and models might be 

more robust than others.
○ Non-Neg. MalConv and LightGBM 

were not so affected.
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Appending Goodware Strings

● Retrieving strings presented by 
goodware files and appending 
them to malware binaries.

● All models are significantly 
affected when 10K+ strings are 
appended.

● Result holds true even for the 
model that also considers PE 
data (LightGBM), which was 
more robust in the previous 
experiment.
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Changing Binary Headers
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● Replacing header fields of malware 
binaries with values from a goodware.
○ Version numbers and checksums.

● Decision took by Microsoft when 
implementing loader: ignores fields.

● Bypassed only six samples.
● Model based on PE features learned 

other characteristics than header 
values.
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Packing and Unpacking samples with UPX

● UPX compresses entire PE into other PE sections, changing the external PE 
binary’s aspect.

● Evaluated by packing and unpacking the provided binary samples.
● Classifiers easily bypassed when appending strings to UPX-extracted 

payloads, but not when directly appended to the UPX-packed payloads.
● Bias against UPX packer: any UPX-packed file is considered malicious.
● Evaluation: randomly picking 150 UPX-packed and 150 non-packed 

samples from malshare database and classified them.
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Packing and Unpacking samples with UPX

● UPX-packed versions are more detected by all classifiers.
● Classifiers biased towards the detection of UPX binaries, despite their content.
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Dataset MalConv Non-Neg MalConv LightGBM

Originally Packed

UPX 63.64% 55.37% 89.26%

Extracted UPX 59.50% 53.72% 66.12%

Originally Non-Packed

Original 65.35% 54.77% 67.23%

UPX Packed 67.43% 56.43% 88.12%
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Packing Samples with a Distinct Packer
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● Bias against the popular UPX? Use another packer!
● Evaluation: packing provided samples with TeLock.

○ Compresses and encrypts the original binary sections into a new one;
○ The original content cannot be identified by the classifiers.

● Proven to be effective, bypassing all models when appending data.
● However, some samples such as the ones from the Extreme RAT family do 

not execute properly when packed with this solution.
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https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/Telock.shtml


Embedding Samples in a Dropper

● Embedding the binary in a new section, not encrypted nor compressed, 
avoiding unpacking issues.

● Evaluation: embedding samples in the Dr0p1t dropper.
● Along with data appendix, it bypassed all detectors without breaking 

sample’s execution.
● However, it generated binaries greater than 5MB, incompatible with the 

challenge rules.
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https://github.com/D4Vinci/Dr0p1t-Framework


Automatic Exploitation
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Creating an automatic exploitation method.



Automating Models Exploitation

● Our findings about the models:
1. Some samples (RATs) do not work well when data is appended.
2. LightGBM detects when unusual headers and sections are present.
3. LightGBM model can be bypassed by packing and/or embedding the 

original binary within a dropper with standard header and sections.
4. Appending data to packed and embedded samples allows bypassing 

the Malconv models without affecting the dropped code execution.
● Objective: Generate variants able to bypass detection automatically.
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Automating Models Exploitation

● Automated the process of packing/embedding all payloads within a new 
file.
○ Standard header and sections.

● Then, we append goodware data to this file.
● Maximum file size: 5MB.

○ TeLock and Dr0p1t were not an option.

● We implemented our own dropper.
○ Embedding the original malware sample as a PE binary resource.
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Dropper

1. Retrieves a pointer to the binary 
resource (line 3 to 5);

2. Creates a new file to drop the 
resource content (line 7);

3. Drop the entire content (line 8 to 10);
4. Launches a process based on the 

dropped file (line 13).
● Bypass all models (data appending).
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Adversarial Malware Generation: Definition

● To generate an adversarial malware (𝐦𝒘+):
○ Original Malware (𝒎𝒘);

■ Input malware file.
○ Embedding Function (𝒇);

■ Generates an entirely new file with standard PE headers and section to host the 
original malware payload as a resource. 

○ Goodware Samples (𝒈𝒘);
■ Set containing 𝒏 samples: all system files from a pristine Windows installation.

○ Extraction Function (𝒅𝒂𝒕𝒂);
■ Retrieve strings and/or bytes information of a file.
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Adversarial Malware Generation: Equation

● Extracted chunks 𝒅𝒂𝒕𝒂(𝒈𝒘𝑖) are appended to the new file created using the 
function 𝒇(𝒎𝒘) to ensure a bias towards the goodware class.

● Function outcome is an adversarial malware sample (𝐦𝒘+).
● Possible to iterate this procedure so as to consider multiple goodware 

samples, thus repeatedly appending data to the end of 𝒇(𝒎𝒘).

34
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion



Adversarial Malware Generation: Scheme
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Adversarial Malware Generation: Scheme
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Adversarial Malware Generation: Results
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Malware (𝒎𝒘) Goodware (𝒈𝒘𝑖) Adversarial Malware (𝒎𝒘+)

Model Class Confidence Class Confidence Class Confidence

MalConv Malware 99.99% Goodware 69.54% Goodware 81.22%

Non-Neg. 
MalConv Malware 75.09% Goodware 73.32% Goodware 98.65%

LightGBM Malware 100.00% Goodware 99.99% Goodware 99.97%

Average Malware 91.69% Goodware 80.95% Goodware 93.28%
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Original Malware Adversarial Malware

Corvus: Malware Execution Graph (Using Execution Trace)

https://corvus.inf.ufpr.br/reports/581/#Graph
https://corvus.inf.ufpr.br/reports/696/#Graph
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Corvus: Original Samples Collection with ssdeep Similarity
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Corvus: Adversarial Samples Collection with ssdeep Similarity



Adversarial Malware in Real World
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● Could our strategy be leveraged 
in real world by actual attackers?

● VirusTotal service: detection 
rates for adversarial samples.

● Results: our approach also 
affected real AV engines.
○ Sample 6 dropping almost in half.

● Explanation: AV engines also 
powered by ML models.
○ Subject to same weaknesses and 

biases.
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Adversarial Malware in Real World
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● Drawback: binaries become 
larger than the original ones.
○ Additional data appended.

● Appended data is not even used 
by the malware.
○ Must be there to create a bias 

towards goodware class.

● Adversarial malware are, in 
general, at least around twice the 
size of original ones.
○ Original: around 1.5MB;
○ Adversarial: around 5MB.
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Discussion
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Weaknesses identified and pinpoint possible mitigation.



Susceptibility to Appended Data

● Major weakness of raw models.
● This simple strategy was enough to defeat the two raw data-based 

models.
● Concept learned by these models is not robust enough against adversarial 

attacks.
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Appending Data Affects Detection but not 
PE Loading

● Windows loader ignores some PE fields and resolve them in runtime.
● Allows attackers to append content to the binaries without affecting their 

functionalities.
● More strict loading policies so as to mitigate the impact of this type of 

bypass technique.
● Loader should check if a binary has more sections than declared and/or if 

the section content exceeds the boundaries defined in its header.
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● Additional data are needed to bypass classifiers, such as strings and 
bytes.

● Bias towards goodware class but also make their size greater.
● Can make it difficult for attackers to distribute them for new victims.
● Challenge to be considered by any attacker: sample with the minimum 

size as possible.

Adversarial Malware are Much Bigger than 
Original Ones
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● Mitigate the impact of appended data on classification models.
● Classifiers changed decision from malware to goodware when goodware 

strings were added to the binary, masking the impact of malware strings.
● Malicious strings need to be still present in the binaries to keep its 

functional.

Develop Models Based on the Presence of 
Features Instead on Frequency
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● Model based on PE binaries features presented a bias against UPX packer.
● Packing benign software with UPX revealed that the detector learned to 

mistakenly always flag UPX binaries as malicious.

Domain-specific Models Might Present 
Biases and not Learn a Concept
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● Accuracy, F1 Score and Precision for what??
● Essential step to moving forward the malware detection field.
● Even deep learning models might be easily bypassed: less effective.
● Adoption of variants robustness testing as a criteria for future malware 

detectors.
● Process of correct evaluating a malware detector, which already includes 

handling concept drift and evolution, class imbalance, degradation, etc.

Adopting Malware Variants Robustness as a 
Criteria to Machine Learning Detectors
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Malware 
Detection  

(Data 
Stream)
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Imbalanced Data

Evolution

Delayed Label Adversarial
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Malware Detection & Data Stream Challenges: How to Correctly Evaluate them?



● Essential step for malware detection.
● Attackers might include goodware characteristics into their malware to 

evade any model.
● Representation that is invariant to these characteristics is fundamental to 

avoid adversarial malware.

Creating a Robust Representation
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● It should be part of ML feature extraction procedures.
● Allow classifiers to detect embedded malicious payload instead of being 

easily deceived by malware droppers.
● Example: https://corvus.inf.ufpr.br/reports/5378/#Static 

○ Foremost & PEDetector

Checking File Resources and Embedded PE 
Files
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https://corvus.inf.ufpr.br/reports/5378/#Static


● It might be a successful strategy.
● Malicious payload is retrieved from the Internet, undetected loader is 

submitted to ML.
● Reason about the whole threat model to cover all attack possibilities.
● Downloader versions: implemented but not submitted due to 

network-isolated sandboxes.

Converting Samples into Downloaders
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● Can be performed against multiple domains.
● Same goal: bypassing a classification.
● Different techniques: domain-specific. 
● Adversarial images: look similar to the original ones (indistinguishable to 

human eye).
● Adversarial malware: same action as the original, even if they are different.
● Simply adding a noise to a malware might generate an invalid malware that 

does not work.

Adversarial Malware is a Particular Case of 
Adversarial Attacks
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Conclusion
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Final remarks, reproducibility and our online platform.



● Models leveraging raw binary data are easily evaded by appending 
additional data to the original binary files.

● Models based on the Windows PE file structure learn malicious section 
names as suspicious.
○ These detectors can be bypassed by replacing them.

● Suggestion: Adoption of malware variant-resilience testing as an 
additional criteria for the evaluation and assessment of future 
developments of ML-based malware detectors.
○ Applied to actual scenarios without the risk of being easily bypassed by attackers.

Conclusion
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● Dropper: prototype to 
embed malware samples 
into unsuspicious binaries 
released as open source 
on github.
○ https://github.com/

marcusbotacin/Dropper

Reproducibility
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https://github.com/marcusbotacin/Dropper
https://github.com/marcusbotacin/Dropper


● All analysis reports of 
evasive and non-evasive 
samples execution and 
their similarities are 
available on the Corvus_ 
platform, developed by our 
research team.
○ https://corvus.inf.ufpr.br

Reproducibility
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