REVERSING AND OFFENSIVE-ORIENTED TRENDS SYMPOSIUM 2019 (ROOTS) 28TH TO 29TH NOVEMBER 2019, VIENNA, AUSTRIA

Shallow Security: on the Creation of Adversarial Variants to Evade Machine Learning-Based Malware Detectors

Fabrício Ceschin Federal University of Paraná, BR @fabriciojoc

Luiz S. Oliveira Federal University of Paraná, BR www.inf.ufpr.br/lesoliveira

Marcus Botacin Federal University of Paraná, BR @MarcusBotacin

André Grégio Federal University of Paraná, BR @abedgregio

Heitor Murilo Gomes University of Waikato, NZ www.heitorgomes.com

Who am I?

Background

- Computer Science Bachelor (Federal University of Paraná, Brazil, 2015).
- Machine Learning Researcher (Since 2015).
- Computer Science Master (Federal University of Paraná, Brazil, 2017).
- Computer Science PhD Candidate (Federal University of Paraná, Brazil).

Research Interests

- Machine Learning applied to Security.
- Machine Learning applications:
 - Data Streams.
 - Concept Drift.
 - Adversarial Machine Learning.

ntrod	uction

Automatic Exploitation

Introduction

Motivation, the problem, initial concepts and our work.

The Problem

- Malware Detection: growing research field.
 - Evolving threats.
- **State-of-the-art:** machine learning-based approaches.
 - Malware classification in families;
 - Malware detection;
 - Dense volume of data (data stream).
- Arms Race: attackers VS defenders.
 - \circ \quad Both of them have access to ML.

Automatic Exploitation

n Discussion

The Problem

- **Defenders:** developing new classification models to overcome new attacks.
- Attackers: generating malware variants to exploit the drawbacks of ML-based approaches.
- Adversarial Machine Learning: techniques that attempt to fool models by generating malicious inputs.
 - Making a sample from a certain class being classified as another one.
 - Serious problems for some scenarios, like **malware detection**.

Adversarial Examples

x

"panda" 57.7% confidence + .007 \times

 $\operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$

"nematode" 8.2% confidence

 $x + \epsilon sign(
abla_{m{x}} J(m{ heta}, {m{x}}, y))$ "gibbon" 99.3 % confidence

Introduction

The Challenge

Model's Weaknesses

Automatic Exploitation

Discussion

Conclusion

Adversarial Examples

- Image Classification: adversarial image should be similar to the original one and yet be classified as being from another class.
- Malware Detection: adversarial malware should behave the same and yet be classified as goodware.
- **Challenge:** automatically generating a fully functional adversarial malware may be difficult.
 - Any modification can make it behave different or not work.

Our Work: How did everything start?

- <u>Machine Learning Static Evasion</u>
 <u>Competition</u>: modify fifty malicious binaries to evade up to three open source malware models.
- Modified malware samples must retain their **original functionality**.
- The prize: NVIDIA Titan-RTX.

Model's Weaknesses

Automatic Exploitation

Discussion

Our Work: What did we do?

- We bypassed **all** the three models creating modified versions of the 50 samples originally provided by the organizers.
- Implemented an **automatic exploitation method** to create these samples.
- Adversarial samples also bypassed **real anti-viruses** as well.
- **Objective:** investigate models robustness against adversarial samples.
- **Results:** models have severe weaknesses so that they can be easily bypassed by attackers motivated to exploit real systems.
 - Insights that we consider important to be shared with the community.

The Challenge

Rules, dataset and models.

The Challenge: How did it work?

- **Fifty** binaries are classified by three distinct ML models.
- Each bypassed model for each binary accounts for **one** point (**150** points in total).
- All binaries are executed on a sandboxed environment and must produce the same Indicators of Compromise as the original ones.
- Our team figured among the top-scorer participants.
 - Second position!

Nickname	Total best score per user
Will	150
deep_secret	150
Jakub	133

Dataset: Original Malware Samples

- **Fifty** PE (Portable Executable) samples of varied malware families for Microsoft Windows.
 - Diversified approaches to Ο bypass sample's detection.
- VirusTotal & AVClass: 21 malware families.
- Real malware samples executed in sandboxed environments.

Malware Family Distribution

Corvus: Our Malware Analysis Platform

Model's Weaknesses

Corvus: Report Example

	Q Se	arch for file name, MD5 or SHA1		t	ılı 🖻	Ê
Creation Date: Oct. 19, 20 Last Update: Oct. 19, 2019 File: 050 Results:	19, 2:23 a.m. , 6:44 a.m.					
GENERAL STATIC	DETECTION DYNAMIC GRAPH	NETWORK CLASSIFICATION				
File						
Тгасе						
19/10/2019 - 5:45: 45.309 Open	14 C:\malware.exe 80	C:\dwmapi.dll				
19/10/2019 - 5:45: 45.309 Open	14 80 C:\malware.exe	C:\Windows\SysWOW64\dwmapi.dll				
19/10/2019 - 5:45: 45.309 Open	14 80 C:\malware.exe	C:\Windows\SysWOW64\dwmapi.dll				
19/10/2019 - 5:45: 45.309 Open	14 80 C:\malware.exe	C:\Windows\Fonts\StaticCache.dat				
19/10/2019 - 5:45:	14	chuis danna can baileach a da b		charles and a		-
Process						
Тгасе						
ntroduction	The Challenge	Model's Weaknesses	Automatic Exploitation	Discussion	Conc	lusion

Machine Learning Models: LightGBM

- Gradient boosting decision tree using a feature matrix as input.
- Hashing trick and histograms based on binary files characteristics (PE header information, file size, timestamp, imported libraries, strings, etc).

Machine Learning Models: MalConv

- End-to-end deep learning model using raw bytes as input.
- Representation of the input using an 8-dimensional embedding (autoencoder).
- Gated 1D convolution layer, followed by a fully connected layer of 128 units.
- Softmax output for each class.

Automatic Exploitation

Discussion

Machine Learning Models: Non-Negative MalConv

- Identical structure to MalConv.
- Only non-negative weights: force the model to look only for malicious evidences rather than looking for both malicious and benign ones.

Dataset used to Train the Models

- Ember 2018 dataset.
- Benchmark for researchers.
- 1.1M Portable Executable (PE) binary files:
 - 900K training samples;
 - 200K testing samples.
- Open Source dataset:
 - <u>https://github.com/</u> endgameinc/ember

endgameinc / ember				• Watch 38	★ Star	371	¥ Fork	96
Code (!) Issues 8	ງ່າ Pull requests 0	Projects 0 🕕 Securi	ity 🛄 Insights					
o description, website, or t	topics provided.							
G 49 commits	ំង 7 branches	0 packages	© 0 releases	🤽 4 contribu	tors	办Vi	ew license	
Branch: master 🔻 🗌 New pull p	equest				Find file	Clon	e or downlo	ad -
Phil Roth some conda packa	iges come only from the o	onda-forge channel			Latest cor	n <mark>mi</mark> t 04c	37ef on 19	Sep
ember	chang	es based on drhyrum's com	ments				4 months	ago
licenses	Updat	e licenses					2 months	ago
malconv	Updat	e README.md					last	yea
resources	no lor	ger including this in the rep	0				4 months	ago
scripts	chang	ing 'year' to 'feature_version	1				4 months	ago
LICENSE.txt	Updat	e licenses					2 months	ago
README.md	some	conda packages come only t	from the conda-forge ch	annel			2 months	ago
	updat	e dependencies					7 months	ago
requirements.txt		accounting for the different name of lief in conda 4 months a					ago	
 requirements.txt requirements_conda.txt 	accou	nting for the different name	of lief in conda				4 months	
 requirements.txt requirements_conda.txt requirements_notebook.tx 	accou xt versio	nting for the different name ns that the notebooks were	of lief in conda run with				4 months	ago

Corvus: Classifying Samples Submitted Using Machine Learning Models

	Search for file name, MD5 or SHA1		<u>+</u>	ılı 🖻 🖨	
Report #702 © © Creation Date: Oct. 19, 2019, 2:23 a.m. Last Update: Oct. 19, 2019, 6:44 a.m. File: 050 Results: GENERAL STATIC DETECTION DYNAMIC GR	RAPH NETWORK CLASSIFICATION				
Results					
BINARY					
KNN (K=3, NFS-BRMalware)	confidence: 100.00% suspicious: False 😂	Decision Tree (NFS-BRMalware)	confidence: 100.00% suspicious: False 🕹		
SVC (Kernel=Linear, NFS-BRMalware)	confidence: 49.08% suspicious: False 😂	MalConv (Ember: Raw Bytes, Threshold=0.5)	confidence: 99.92% suspicious: True 🖉		
Random Forest (100 estimators, NFS-BRMalware)	confidence: 61.00% suspicious: True 🛇	Non-Negative MalConv (Ember: Raw Bytes, Threshold=0.	35) confidence: 58.13% suspicious: True		
LightGDM (Ember: File Characteristics, Threshold=0.8336)	confidence: 100.00% suspicious: True Ø				
Introduction The Challenge	Model's Weaknesses	Automatic Exploitation	Discussion	Conclusion	19

Biased Models?

- How does these models perform when classifying files of a pristine Windows installation?
- **Raw data:** high False Positive Rate (FPR) when handling benign data.

FileType		False Positive Rate (FPR)				
		MalConv	Non-Neg. MalConv	LightGBM		
EXI	Ës ¦	71.21%	87.72%	0.00%		
DLLs 56.40%		56.40%	80.55%	0.00%		
Introduction	The Challenge	Model's Weaknesses	Automatic Exploitation	Discussion Conclusion		

Model's Weaknesses

Series of experiments to identify model's weaknesses.

Appending Random Data

- Generating growing chunks of random data, up to the limit of 5MB defined by the challenge.
 - MalConv, based on raw data, is more susceptible to this strategy.
 - \circ Severe for chunks greater than 1MB.
 - Some features and models might be more robust than others.
 - Non-Neg. MalConv and LightGBM were not so affected.

Automatic Exploitation

Discussion

22

Appending Goodware Strings

- Retrieving strings presented by goodware files and appending them to malware binaries.
- All models are significantly affected when 10K+ strings are appended.
- Result holds true even for the model that also considers PE data (LightGBM), which was more robust in the previous experiment.

Automatic Exploitation

Discussion

Changing Binary Headers

- Replacing header fields of malware binaries with values from a goodware.
 - \circ Version numbers and checksums.
- Decision took by Microsoft when implementing loader: ignores fields.
- Bypassed **only six** samples.
- Model based on PE features learned other characteristics than header values.

```
# open base gw
base pe = pefile.PE(GWR BASE)
# iterate over output samples , changing their PE HEADER
for m in adv list :
   # open adversarial sample
   m pe = pefile.PE(m)
   # update adversarial header
   m pe.OPTIONAL HEADER.MajorLinkerVersion =
   base pe.OPTIONAL HEADER.MajorLinkerVersion
   m pe.OPTIONAL HEADER.MinorLinkerVersion =
   base pe.OPTIONAL HEADER.MinorLinkerVersion
   m pe.OPTIONAL HEADER.CheckSum = base pe.OPTIONAL HEADER.CheckSum
   m pe.OPTIONAL HEADER.MajorOperatingSystemVersion =
   base pe.OPTIONAL HEADER.MajorOperatingSystemVersion
   m pe.OPTIONAL HEADER.MinorOperatingSystemVersion =
   base pe.OPTIONAL HEADER.MinorOperatingSystemVersion
   m pe.OPTIONAL HEADER.MajorImageVersion =
   base pe.OPTIONAL HEADER.MajorImageVersion
   m_pe.OPTIONAL HEADER.MinorImageVersion =
   base_pe.OPTIONAL_HEADER.MinorImageVersion
   # write updated sample
   m pe.write ( m )
```

Automatic Exploitation

Discussion

Packing and Unpacking samples with UPX

- UPX compresses entire PE into other PE sections, changing the external PE binary's aspect.
- Evaluated by packing and unpacking the provided binary samples.
- Classifiers easily bypassed when appending strings to UPX-**extracted** payloads, but not when directly appended to the UPX-**packed** payloads.
- **Bias against UPX packer:** any UPX-packed file is considered malicious.
- **Evaluation:** randomly picking 150 UPX-packed and 150 non-packed samples from malshare database and classified them.

- UPX-packed versions are more detected by all classifiers.
- Classifiers biased towards the detection of UPX binaries, despite their content.

Dataset	1	MalConv	Non-Neg MalConv		LightGBM		
	Originally Packed						
UPX	UPX 63.64%		55.37%		89.26%		
Extracted UP	ХЦ	59.50% 53.72%			66.12%		
		Originally N	Ion-Packed				
Original	 	65.35%	54.77%		67.23%		
UPX Packed	UPX Packed 67.43%		56.43%		88.12%		
Introduction	The Challenge	Model's Weaknesses	Automatic Exploitation	Discussion	Conclusion 20		

Packing Samples with a Distinct Packer

- Bias against the popular UPX? Use another packer!
- Evaluation: packing provided samples with <u>TeLock</u>.
 - Compresses and encrypts the original binary sections into a new one;
 - \circ \quad The original content cannot be identified by the classifiers.
- Proven to be effective, bypassing all models when appending data.
- However, some samples such as the ones from the Extreme RAT family do not execute properly when packed with this solution.

Embedding Samples in a Dropper

- Embedding the binary in a new section, not encrypted nor compressed, avoiding unpacking issues.
- **Evaluation:** embedding samples in the <u>Dr0p1t dropper</u>.
- Along with data appendix, it bypassed all detectors without breaking sample's execution.
- However, it generated binaries greater than 5MB, incompatible with the challenge rules.

Automatic Exploitation

Creating an automatic exploitation method.

Automating Models Exploitation

- Our findings about the models:
 - 1. Some samples (RATs) do not work well when data is appended.
 - 2. LightGBM detects when unusual headers and sections are present.
 - **3.** LightGBM model can be bypassed by packing and/or embedding the original binary within a dropper with standard header and sections.
 - **4.** Appending data to packed and embedded samples allows bypassing the Malconv models without affecting the dropped code execution.
- **Objective:** Generate variants able to bypass detection automatically.

Automating Models Exploitation

- Automated the process of packing/embedding all payloads within a new file.
 - Standard header and sections.
- Then, we append goodware data to this file.
- Maximum file size: 5MB.
 - TeLock and Dr0p1t were not an option.
- We implemented our own dropper.
 - Embedding the original malware sample as a PE binary resource.

Dropper

- Retrieves a pointer to the binary 1. resource (line 3 to 5);
- Creates a new file to drop the 2. resource content (line 7);
- 7 Drop the entire content (line 8 to 10); 3. 8
- Launches a process based on the 4. 10 dropped file (line 13). 11
- 12 Bypass all models (data appending). $\frac{12}{13}$

```
int main(){
    HMODULE h = GetModuleHandle(NULL);
    HRSRC r = FindResource(h, ...);
    HGLOBAL rc = LoadResource(h, r);
    void* data = LockResource(rc);
    DWORD size = SizeofResource(h,r);
    FILE *f = fopen("dropped.exe","wb");
    for(int i=0;i<size;i++){</pre>
        unsigned char c1 = ((char*)data)[i];
        fprintf(f,"%c",c1);
    fclose(f);
    CreateProcess("dropped.exe", ...);
```

Automatic Exploitation

1

2

3

4

5

6

Adversarial Malware Generation: Definition

- To generate an adversarial malware (mw+):
 - Original Malware (*mw*);
 - Input malware file.
 - Embedding Function (*f*);
 - Generates an entirely new file with standard PE headers and section to host the original malware payload as a resource.
 - Goodware Samples (gw);
 - Set containing *n* samples: all system files from a pristine Windows installation.
 - Extraction Function (*data*);
 - Retrieve strings and/or bytes information of a file.

Adversarial Malware Generation: Equation

- Extracted chunks $data(gw_i)$ are appended to the new file created using the function f(mw) to ensure a **bias towards the goodware class**.
- Function outcome is an adversarial malware sample (mw+).
- Possible to iterate this procedure so as to consider multiple goodware samples, thus repeatedly appending data to the end of f(mw).

$$mw+=f(mw)+\sum_{i}^{n}data(gw_{i})$$

Adversarial Malware Generation: Scheme

x

"panda" 57.7% confidence $+.007 \times$

$$\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y)$$

"nematode" 8.2% confidence

 $egin{aligned} & x+\ \epsilon \mathrm{sign}(
abla_{oldsymbol{x}}J(oldsymbol{ heta},x,y))\ ``\mathrm{gibbon''}\ 99.3~\%\ \mathrm{confidence} \end{aligned}$

lntr	odu	Intic	n n
	()(11)	11:11	
	out		/

The Challenge

Model's Weaknesses

Automatic Exploitation

Discussion

Adversarial Malware Generation: Scheme

Model's Weaknesses

Automatic Exploitation

Discussion

Adversarial Malware Generation: Results

	Malware (mw)		Goodware (gw_i)		Adversarial Malware (mw+)		
Model	Class	Confidence	Class	Confidence	Class	Confidence	
MalConv	Malware	99.99%	Goodware	69.54%	Goodware	81.22%	
Non-Neg. MalConv	Malware	75.09%	Goodware	73.32%	Goodware	98.65%	
LightGBM	Malware	100.00%	Goodware	99.99%	Goodware	99.97%	
Average	Malware	91.69%	Goodware	80.95%	Goodware	93.28%	

Introduction

Model's Weaknesses

Automatic Exploitation

Discussion

Corvus: Malware Execution Graph (Using Execution Trace)

Introduction

Model's Weaknesses

Automatic Exploitation

Discussion

Conclusion

Corvus: Original Samples Collection with ssdeep Similarity

Corvus ^{beta}	Q Search for file name, MD5 or SHA1				<u>+</u>	11.	÷	Ľ	В
Collection: Evade Malware M	/I (Original Samples)								
	(enginar eamples)								
Creation Date: Oct. 14, 2019, 2:30 p.m. Update Date: Oct. 14, 2019, 8:38 p.m. Created by: anonymous Similarity Status: Finished Reports:									
REPORTS	SIMILARITY	GRAPHS							
File 1			File 2				Simi	ilarity	
c444e7e503cd7fd0631c9622	(037) 8eef365a		d3a3e3de34adaa20a27588201e7a4f16 (039)			8	5%	
d3a3e3de34adaa20a2758820	01e7a4f16 (039)		c444e7e503cd7fd0631c96228eef365a (037)				8	5%	
9428cbf71d4f06c66882773ac	cd55dda1 (038)		f6619f932b36a940f8f6e89988434e3d (035)				6	5%	
f6619f932b36a940f8f6e8998	38434e3d (035)		9428cbf71d4f06c66882773acd55dda1 (038))			6	5%	
12ee889f3a4da0ad4431f67b3	30b8279e (013)		534d13022fb65a1c0243d01324b62749 (049)					
534d13022fb65a1c0243d013	24b62749 (049)		12ee889f3a4da0ad4431f67b30b8279e (013))					
0b72e57d9011d2b15e6abc1e	e8ef0451a (027)		fcee486c8496785dc3e467d53b14f8fa (017)				4	4%	
fcee486c8496785dc3e467d5	53b14f8fa (017)		0b72e57d9011d2b15e6abc1e8ef0451a (027)			4	4%	

Introduction

The Challenge

Model's Weaknesses

Automatic Exploitation

Discussion

39

Corvus: Adversarial Samples Collection with ssdeep Similarity

Corvus	Q Search for file name, MD5	or SHA1			±	սե	: L	В
Collection: Evade M	1alware ML (Adversarial Sa	amples)						
Greation Date: Oct. 11, 2019, 4:56 p.m. Update Date: Oct. 13, 2019, 5:43 p.m. Created by: anonymous Similarity Status: Finished Reports:								
REPORTS	SIMILARITY	GRAPHS						
	File 1		File 2				Similarit	/
30f318a	afc7cd69e767e9a48c659ecad (007)	e5	e21320ed5fb45cbb0a2cbd662e28e8 (03	5)			97%	
11da9f9	41fed91a25c054045ad4604f1 (003)	44	718c856b17db945423ffacebcab12b (016	i)			97%	
11da9f9	41fed91a25c054045ad4604f1 (003)	906	2028745ad56da05614731b799d6a95 (03)	2)			97%	
11da9f9	41fed91a25c054045ad4604f1 (003)	1b	8f9247397c5c26037971d00e6dc468 (034	I)			97%	
11da9f9	41fed91a25c054045ad4604f1 (003)	32	.aefc46387678069306760f66991779 (047)			97%	
44718c8	56b17db945423ffacebcab12b (016)	11	.da9f941fed91a25c054045ad4604f1 (003)			97%	
44718c8	56b17db945423ffacebcab12b (016)	906	:028745ad56da05614731b799d6a95 (03)	2)			97%	
44718c8	56b17db945423ffacebcab12b (016)	16	8f9247397c5c26037971d00e6dc468 (034	I)			97%	

Introduction

The Challenge

Model's Weaknesses

Automatic Exploitation

Discussion

on

40

Adversarial Malware in Real World

- Could our strategy be leveraged in real world by actual attackers?
- VirusTotal service: detection rates for adversarial samples.
- **Results:** our approach also affected real AV engines.
 - Sample 6 dropping almost in half.
- **Explanation:** AV engines also powered by ML models.
 - Subject to same weaknesses and biases.

Automatic Exploitation

Adversarial Malware in Real World

- Drawback: binaries become larger than the original ones.
 Additional data appended.
- Appended data is not even used by the malware.
 - Must be there to create a bias towards goodware class.
- Adversarial malware are, in general, at least around twice the size of original ones.
 - **Original:** around 1.5MB;
 - Adversarial: around 5MB.

Introduction

Discussion

Weaknesses identified and pinpoint possible mitigation.

Susceptibility to Appended Data

- Major weakness of raw models.
- This simple strategy was enough to defeat the two raw data-based models.
- Concept learned by these models is not robust enough against adversarial attacks.

Appending Data Affects Detection but not PE Loading

- Windows loader ignores some PE fields and resolve them in runtime.
- Allows attackers to append content to the binaries without affecting their functionalities.
- More strict loading policies so as to mitigate the impact of this type of bypass technique.
- Loader should check if a binary has more sections than declared and/or if the section content exceeds the boundaries defined in its header.

Adversarial Malware are Much Bigger than Original Ones

- Additional data are needed to bypass classifiers, such as strings and bytes.
- Bias towards goodware class but also make their size greater.
- Can make it difficult for attackers to distribute them for new victims.
- Challenge to be considered by any attacker: sample with the minimum size as possible.

Develop Models Based on the Presence of Features Instead on Frequency

- Mitigate the impact of appended data on classification models.
- Classifiers changed decision from malware to goodware when goodware strings were added to the binary, masking the impact of malware strings.
- Malicious strings need to be still present in the binaries to keep its functional.

Domain-specific Models Might Present Biases and not Learn a Concept

- Model based on PE binaries features presented a bias against UPX packer.
- Packing benign software with UPX revealed that the detector learned to mistakenly always flag UPX binaries as malicious.

Adopting Malware Variants Robustness as a Criteria to Machine Learning Detectors

- Accuracy, F1 Score and Precision for what??
- Essential step to moving forward the malware detection field.
- Even deep learning models might be easily bypassed: less effective.
- Adoption of variants robustness testing as a criteria for future malware detectors.
- Process of correct evaluating a malware detector, which already includes handling concept drift and evolution, class imbalance, degradation, etc.

<u>1</u>9

Malware Detection & Data Stream Challenges: How to Correctly Evaluate them?

Introduction

The Challenge

Model's Weaknesses

Automatic Exploitation

Discussion

Conclusion

Creating a Robust Representation

- Essential step for malware detection.
- Attackers might include goodware characteristics into their malware to evade any model.
- Representation that is invariant to these characteristics is fundamental to avoid adversarial malware.

Automatic Exploitation

Checking File Resources and Embedded PE Files

- It should be part of ML feature extraction procedures.
- Allow classifiers to detect embedded malicious payload instead of being easily deceived by malware droppers.
- Example: <u>https://corvus.inf.ufpr.br/reports/5378/#Static</u>
 - Foremost & PEDetector

Introduction

Converting Samples into Downloaders

- It might be a successful strategy.
- Malicious payload is retrieved from the Internet, undetected loader is submitted to ML.
- Reason about the whole threat model to cover all attack possibilities.
- **Downloader versions:** implemented but not submitted due to network-isolated sandboxes.

Adversarial Malware is a Particular Case of Adversarial Attacks

- Can be performed against multiple domains.
- Same goal: bypassing a classification.
- Different techniques: domain-specific.
- Adversarial images: look similar to the original ones (indistinguishable to human eye).
- Adversarial malware: same action as the original, even if they are different.
- Simply adding a noise to a malware might generate an invalid malware that does not work.

Conclusion

Final remarks, reproducibility and our online platform.

- Models leveraging raw binary data are easily evaded by appending additional data to the original binary files.
- Models based on the Windows PE file structure learn malicious section names as suspicious.
 - These detectors can be bypassed by replacing them.
- **Suggestion:** Adoption of malware variant-resilience testing as an additional criteria for the evaluation and assessment of future developments of ML-based malware detectors.
 - Applied to actual scenarios without the risk of being easily bypassed by attackers.

Introduction	The Challenge

Reproducibility

- **Dropper:** prototype to embed malware samples into unsuspicious binaries released as open source on github.
 - <u>https://github.com/</u> <u>marcusbotacin/Dropper</u>

marcusi	ootacin / Dro	opper				O Watch ▼ 1	🛨 Unst	ar 1	¥ Fork	
> Code	() Issues 0	Pull requests 0	🔳 Wiki	ki 🕕 Security 🔟 Insights						
bed an e	executable as	a PE resource, drops	and launches it in runtime.							
2 commits		🖗 1 branch	🗊 0 packages	🛇 0 relea	ses	41 contributor		ăt MIT		
ranch: mast	ter 🕶 New pul	l request			Create new file	Upload files	Find file	Clone	or downlo	ad ·
Marcus	dropper code						Latest com	mit f 87f	F22 on 30	Au
Dropper	ŕ		dropper code					3	months	ag
LICENSE			Initial commit					З	months	ag
READM	E.md		dropper code					3	months	ag
	E.md									
Dr	opper									
Emb	ed an executa	ble as a PE resource	, drops and launches it in r	untime.						

Introduction

The Challenge

Model's Weaknesses

Automatic Exploitation

Discussion

Conclusion

Reproducibility

- All analysis reports of evasive and non-evasive samples execution and their similarities are available on the Corvus_ platform, developed by our research team.
 - <u>https://corvus.inf.ufpr.br</u>

Automatic Exploitation

REVERSING AND OFFENSIVE-ORIENTED TRENDS SYMPOSIUM 2019 (ROOTS) 28TH TO 29TH NOVEMBER 2019, VIENNA, AUSTRIA

Shallow Security: on the Creation of Adversarial Variants to Evade Machine Learning-Based Malware Detectors

Contact: <u>fjoceschin@inf.ufpr.br</u> or @fabriciojoc **Website:** <u>secret.inf.ufpr.br</u> **Our Project:** <u>corvus.inf.ufpr.br</u>

Fabrício Ceschin Federal University of Paraná, BR @fabriciojoc

Luiz S. Oliveira Federal University of Paraná, BR www.inf.ufpr.br/lesoliveira

Marcus Botacin Federal University of Paraná, BR @MarcusBotacin

André Grégio Federal University of Paraná, BR @abedgregio

Heitor Murilo Gomes University of Waikato, NZ www.heitorgomes.com