
Shallow Security: on the Creation
of Adversarial Variants to Evade
Machine Learning-Based
Malware Detectors

Luiz S. Oliveira
Federal University of Paraná, BR
www.inf.ufpr.br/lesoliveira

André Grégio
Federal University of Paraná, BR
@abedgregio

REVERSING AND OFFENSIVE-ORIENTED TRENDS SYMPOSIUM 2019 (ROOTS)
28TH TO 29TH NOVEMBER 2019, VIENNA, AUSTRIA

1

Fabrício Ceschin
Federal University of Paraná, BR
@fabriciojoc

Marcus Botacin
Federal University of Paraná, BR
@MarcusBotacin

Heitor Murilo Gomes
University of Waikato, NZ
www.heitorgomes.com

1

https://web.inf.ufpr.br/luizoliveira/
https://twitter.com/abedgregio
https://twitter.com/fabriciojoc
https://twitter.com/MarcusBotacin
https://www.heitorgomes.com/

Who am I?

Background

● Computer Science Bachelor (Federal
University of Paraná, Brazil, 2015).

● Machine Learning Researcher (Since
2015).

● Computer Science Master (Federal
University of Paraná, Brazil, 2017).

● Computer Science PhD Candidate
(Federal University of Paraná, Brazil).

Research Interests

● Machine Learning applied to
Security.

● Machine Learning applications:
○ Data Streams.
○ Concept Drift.
○ Adversarial Machine Learning.

Introduction
2

The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Introduction

3

Motivation, the problem, initial concepts and our work.

The Problem

● Malware Detection: growing research field.
○ Evolving threats.

● State-of-the-art: machine learning-based
approaches.
○ Malware classification in families;
○ Malware detection;
○ Dense volume of data (data stream).

● Arms Race: attackers VS defenders.
○ Both of them have access to ML.

4
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

The Problem

● Defenders: developing new classification models to overcome new
attacks.

● Attackers: generating malware variants to exploit the drawbacks of
ML-based approaches.

● Adversarial Machine Learning: techniques that attempt to fool models by
generating malicious inputs.
○ Making a sample from a certain class being classified as another one.
○ Serious problems for some scenarios, like malware detection.

5
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Adversarial Examples

6
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Adversarial Examples

● Image Classification: adversarial image should be
similar to the original one and yet be classified as
being from another class.

● Malware Detection: adversarial malware should
behave the same and yet be classified as goodware.

● Challenge: automatically generating a fully functional
adversarial malware may be difficult.
○ Any modification can make it behave different or not work.

7
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Our Work: How did everything start?

● Machine Learning Static Evasion
Competition: modify fifty malicious
binaries to evade up to three open
source malware models.

● Modified malware samples must
retain their original functionality.

● The prize: NVIDIA Titan-RTX.

8
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

https://www.endgame.com/blog/technical-blog/machine-learning-static-evasion-competition
https://www.endgame.com/blog/technical-blog/machine-learning-static-evasion-competition

Our Work: What did we do?

● We bypassed all the three models creating modified versions of the 50
samples originally provided by the organizers.

● Implemented an automatic exploitation method to create these samples.
● Adversarial samples also bypassed real anti-viruses as well.
● Objective: investigate models robustness against adversarial samples.
● Results: models have severe weaknesses so that they can be easily

bypassed by attackers motivated to exploit real systems.
○ Insights that we consider important to be shared with the community.

9
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

The Challenge

10

Rules, dataset and models.

The Challenge: How did it work?

● Fifty binaries are classified by three
distinct ML models.

● Each bypassed model for each
binary accounts for one point (150
points in total).

● All binaries are executed on a
sandboxed environment and must
produce the same Indicators of
Compromise as the original ones.

● Our team figured among the
top-scorer participants.
○ Second position!

11
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Dataset: Original Malware Samples

● Fifty PE (Portable
Executable) samples of
varied malware families for
Microsoft Windows.
○ Diversified approaches to

bypass sample’s detection.

● VirusTotal & AVClass: 21
malware families.

● Real malware samples
executed in sandboxed
environments.

12
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

https://www.virustotal.com/gui/home
https://github.com/malicialab/avclass

13
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Corvus: Our Malware Analysis Platform

14
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Corvus: Report Example

Machine Learning Models: LightGBM

● Gradient boosting decision tree
using a feature matrix as input.

● Hashing trick and histograms
based on binary files
characteristics (PE header
information, file size,
timestamp, imported libraries,
strings, etc).

15
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Goodware
Malware

Input Feature
Extraction

OutputClassification

Machine Learning Models: MalConv

● End-to-end deep learning model using
raw bytes as input.

● Representation of the input using an
8-dimensional embedding
(autoencoder).

● Gated 1D convolution layer, followed by
a fully connected layer of 128 units.

● Softmax output for each class.

16
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Goodware
Malware

Input
Feature Extraction

+
 Classification

Output

Machine Learning Models: Non-Negative
MalConv

● Identical structure to MalConv.
● Only non-negative weights: force the

model to look only for malicious
evidences rather than looking for both
malicious and benign ones.

17
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Goodware
Malware

Input
Feature Extraction

+
 Classification

Output

Dataset used to Train the Models

● Ember 2018 dataset.
● Benchmark for researchers.
● 1.1M Portable Executable (PE)

binary files:
○ 900K training samples;
○ 200K testing samples.

● Open Source dataset:
○ https://github.com/

endgameinc/ember

18
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

https://github.com/endgameinc/ember
https://github.com/endgameinc/ember

19
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Corvus: Classifying Samples Submitted Using Machine Learning Models

Biased Models?

● How does these models perform when classifying files of a pristine
Windows installation?

● Raw data: high False Positive Rate (FPR) when handling benign data.

20

FileType
False Positive Rate (FPR)

MalConv Non-Neg. MalConv LightGBM

EXEs 71.21% 87.72% 0.00%

DLLs 56.40% 80.55% 0.00%

Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Model’s Weaknesses

21

Series of experiments to identify model’s weaknesses.

Appending Random Data

● Generating growing chunks of
random data, up to the limit of
5MB defined by the challenge.
○ MalConv, based on raw data, is more

susceptible to this strategy.
○ Severe for chunks greater than 1MB.
○ Some features and models might be

more robust than others.
○ Non-Neg. MalConv and LightGBM

were not so affected.

22
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Appending Goodware Strings

● Retrieving strings presented by
goodware files and appending
them to malware binaries.

● All models are significantly
affected when 10K+ strings are
appended.

● Result holds true even for the
model that also considers PE
data (LightGBM), which was
more robust in the previous
experiment.

23
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Changing Binary Headers

24

● Replacing header fields of malware
binaries with values from a goodware.
○ Version numbers and checksums.

● Decision took by Microsoft when
implementing loader: ignores fields.

● Bypassed only six samples.
● Model based on PE features learned

other characteristics than header
values.

Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Packing and Unpacking samples with UPX

● UPX compresses entire PE into other PE sections, changing the external PE
binary’s aspect.

● Evaluated by packing and unpacking the provided binary samples.
● Classifiers easily bypassed when appending strings to UPX-extracted

payloads, but not when directly appended to the UPX-packed payloads.
● Bias against UPX packer: any UPX-packed file is considered malicious.
● Evaluation: randomly picking 150 UPX-packed and 150 non-packed

samples from malshare database and classified them.

25
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Packing and Unpacking samples with UPX

● UPX-packed versions are more detected by all classifiers.
● Classifiers biased towards the detection of UPX binaries, despite their content.

26

Dataset MalConv Non-Neg MalConv LightGBM

Originally Packed

UPX 63.64% 55.37% 89.26%

Extracted UPX 59.50% 53.72% 66.12%

Originally Non-Packed

Original 65.35% 54.77% 67.23%

UPX Packed 67.43% 56.43% 88.12%

Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Packing Samples with a Distinct Packer

27

● Bias against the popular UPX? Use another packer!
● Evaluation: packing provided samples with TeLock.

○ Compresses and encrypts the original binary sections into a new one;
○ The original content cannot be identified by the classifiers.

● Proven to be effective, bypassing all models when appending data.
● However, some samples such as the ones from the Extreme RAT family do

not execute properly when packed with this solution.

Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/Telock.shtml

Embedding Samples in a Dropper

● Embedding the binary in a new section, not encrypted nor compressed,
avoiding unpacking issues.

● Evaluation: embedding samples in the Dr0p1t dropper.
● Along with data appendix, it bypassed all detectors without breaking

sample’s execution.
● However, it generated binaries greater than 5MB, incompatible with the

challenge rules.

28
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

https://github.com/D4Vinci/Dr0p1t-Framework

Automatic Exploitation

29

Creating an automatic exploitation method.

Automating Models Exploitation

● Our findings about the models:
1. Some samples (RATs) do not work well when data is appended.
2. LightGBM detects when unusual headers and sections are present.
3. LightGBM model can be bypassed by packing and/or embedding the

original binary within a dropper with standard header and sections.
4. Appending data to packed and embedded samples allows bypassing

the Malconv models without affecting the dropped code execution.
● Objective: Generate variants able to bypass detection automatically.

30
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Automating Models Exploitation

● Automated the process of packing/embedding all payloads within a new
file.
○ Standard header and sections.

● Then, we append goodware data to this file.
● Maximum file size: 5MB.

○ TeLock and Dr0p1t were not an option.

● We implemented our own dropper.
○ Embedding the original malware sample as a PE binary resource.

31
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Dropper

1. Retrieves a pointer to the binary
resource (line 3 to 5);

2. Creates a new file to drop the
resource content (line 7);

3. Drop the entire content (line 8 to 10);
4. Launches a process based on the

dropped file (line 13).
● Bypass all models (data appending).

32
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Adversarial Malware Generation: Definition

● To generate an adversarial malware (𝐦𝒘+):
○ Original Malware (𝒎𝒘);

■ Input malware file.
○ Embedding Function (𝒇);

■ Generates an entirely new file with standard PE headers and section to host the
original malware payload as a resource.

○ Goodware Samples (𝒈𝒘);
■ Set containing 𝒏 samples: all system files from a pristine Windows installation.

○ Extraction Function (𝒅𝒂𝒕𝒂);
■ Retrieve strings and/or bytes information of a file.

33
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Adversarial Malware Generation: Equation

● Extracted chunks 𝒅𝒂𝒕𝒂(𝒈𝒘𝑖) are appended to the new file created using the
function 𝒇(𝒎𝒘) to ensure a bias towards the goodware class.

● Function outcome is an adversarial malware sample (𝐦𝒘+).
● Possible to iterate this procedure so as to consider multiple goodware

samples, thus repeatedly appending data to the end of 𝒇(𝒎𝒘).

34
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Adversarial Malware Generation: Scheme

35
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Adversarial Malware Generation: Scheme

36
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Adversarial Malware Generation: Results

37

Malware (𝒎𝒘) Goodware (𝒈𝒘𝑖) Adversarial Malware (𝒎𝒘+)

Model Class Confidence Class Confidence Class Confidence

MalConv Malware 99.99% Goodware 69.54% Goodware 81.22%

Non-Neg.
MalConv Malware 75.09% Goodware 73.32% Goodware 98.65%

LightGBM Malware 100.00% Goodware 99.99% Goodware 99.97%

Average Malware 91.69% Goodware 80.95% Goodware 93.28%

Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

38
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Original Malware Adversarial Malware

Corvus: Malware Execution Graph (Using Execution Trace)

https://corvus.inf.ufpr.br/reports/581/#Graph
https://corvus.inf.ufpr.br/reports/696/#Graph

39
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Corvus: Original Samples Collection with ssdeep Similarity

40
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Corvus: Adversarial Samples Collection with ssdeep Similarity

Adversarial Malware in Real World

41

● Could our strategy be leveraged
in real world by actual attackers?

● VirusTotal service: detection
rates for adversarial samples.

● Results: our approach also
affected real AV engines.
○ Sample 6 dropping almost in half.

● Explanation: AV engines also
powered by ML models.
○ Subject to same weaknesses and

biases.

Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Adversarial Malware in Real World

42

● Drawback: binaries become
larger than the original ones.
○ Additional data appended.

● Appended data is not even used
by the malware.
○ Must be there to create a bias

towards goodware class.

● Adversarial malware are, in
general, at least around twice the
size of original ones.
○ Original: around 1.5MB;
○ Adversarial: around 5MB.

Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Discussion

43

Weaknesses identified and pinpoint possible mitigation.

Susceptibility to Appended Data

● Major weakness of raw models.
● This simple strategy was enough to defeat the two raw data-based

models.
● Concept learned by these models is not robust enough against adversarial

attacks.

44
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Appending Data Affects Detection but not
PE Loading

● Windows loader ignores some PE fields and resolve them in runtime.
● Allows attackers to append content to the binaries without affecting their

functionalities.
● More strict loading policies so as to mitigate the impact of this type of

bypass technique.
● Loader should check if a binary has more sections than declared and/or if

the section content exceeds the boundaries defined in its header.

45
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

● Additional data are needed to bypass classifiers, such as strings and
bytes.

● Bias towards goodware class but also make their size greater.
● Can make it difficult for attackers to distribute them for new victims.
● Challenge to be considered by any attacker: sample with the minimum

size as possible.

Adversarial Malware are Much Bigger than
Original Ones

46
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

● Mitigate the impact of appended data on classification models.
● Classifiers changed decision from malware to goodware when goodware

strings were added to the binary, masking the impact of malware strings.
● Malicious strings need to be still present in the binaries to keep its

functional.

Develop Models Based on the Presence of
Features Instead on Frequency

47
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

● Model based on PE binaries features presented a bias against UPX packer.
● Packing benign software with UPX revealed that the detector learned to

mistakenly always flag UPX binaries as malicious.

Domain-specific Models Might Present
Biases and not Learn a Concept

48
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

● Accuracy, F1 Score and Precision for what??
● Essential step to moving forward the malware detection field.
● Even deep learning models might be easily bypassed: less effective.
● Adoption of variants robustness testing as a criteria for future malware

detectors.
● Process of correct evaluating a malware detector, which already includes

handling concept drift and evolution, class imbalance, degradation, etc.

Adopting Malware Variants Robustness as a
Criteria to Machine Learning Detectors

49
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

50

Malware
Detection

(Data
Stream)

Drift

Imbalanced Data

Evolution

Delayed Label Adversarial

Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Malware Detection & Data Stream Challenges: How to Correctly Evaluate them?

● Essential step for malware detection.
● Attackers might include goodware characteristics into their malware to

evade any model.
● Representation that is invariant to these characteristics is fundamental to

avoid adversarial malware.

Creating a Robust Representation

51
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

● It should be part of ML feature extraction procedures.
● Allow classifiers to detect embedded malicious payload instead of being

easily deceived by malware droppers.
● Example: https://corvus.inf.ufpr.br/reports/5378/#Static

○ Foremost & PEDetector

Checking File Resources and Embedded PE
Files

52
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

https://corvus.inf.ufpr.br/reports/5378/#Static

● It might be a successful strategy.
● Malicious payload is retrieved from the Internet, undetected loader is

submitted to ML.
● Reason about the whole threat model to cover all attack possibilities.
● Downloader versions: implemented but not submitted due to

network-isolated sandboxes.

Converting Samples into Downloaders

53
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

● Can be performed against multiple domains.
● Same goal: bypassing a classification.
● Different techniques: domain-specific.
● Adversarial images: look similar to the original ones (indistinguishable to

human eye).
● Adversarial malware: same action as the original, even if they are different.
● Simply adding a noise to a malware might generate an invalid malware that

does not work.

Adversarial Malware is a Particular Case of
Adversarial Attacks

54
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

Conclusion

55

Final remarks, reproducibility and our online platform.

● Models leveraging raw binary data are easily evaded by appending
additional data to the original binary files.

● Models based on the Windows PE file structure learn malicious section
names as suspicious.
○ These detectors can be bypassed by replacing them.

● Suggestion: Adoption of malware variant-resilience testing as an
additional criteria for the evaluation and assessment of future
developments of ML-based malware detectors.
○ Applied to actual scenarios without the risk of being easily bypassed by attackers.

Conclusion

56
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

● Dropper: prototype to
embed malware samples
into unsuspicious binaries
released as open source
on github.
○ https://github.com/

marcusbotacin/Dropper

Reproducibility

57
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

https://github.com/marcusbotacin/Dropper
https://github.com/marcusbotacin/Dropper

● All analysis reports of
evasive and non-evasive
samples execution and
their similarities are
available on the Corvus_
platform, developed by our
research team.
○ https://corvus.inf.ufpr.br

Reproducibility

58
Introduction The Challenge Model’s Weaknesses Automatic Exploitation Discussion Conclusion

https://corvus.inf.ufpr.br

59

REVERSING AND OFFENSIVE-ORIENTED TRENDS SYMPOSIUM 2019 (ROOTS)
28TH TO 29TH NOVEMBER 2019, VIENNA, AUSTRIA

Shallow Security: on the Creation of Adversarial Variants
to Evade Machine Learning-Based Malware Detectors

Contact: fjoceschin@inf.ufpr.br or @fabriciojoc
Website: secret.inf.ufpr.br
Our Project: corvus.inf.ufpr.br

Luiz S. Oliveira
Federal University of Paraná, BR
www.inf.ufpr.br/lesoliveira

André Grégio
Federal University of Paraná, BR
@abedgregio

REVERSING AND OFFENSIVE-ORIENTED TRENDS SYMPOSIUM 2019 (ROOTS)
28TH TO 29TH NOVEMBER 2019, VIENNA, AUSTRIA

Fabrício Ceschin
Federal University of Paraná, BR
@fabriciojoc

Marcus Botacin
Federal University of Paraná, BR
@MarcusBotacin

Heitor Murilo Gomes
University of Waikato, NZ
www.heitorgomes.com

mailto:fjoceschin@inf.ufpr.br
https://twitter.com/fabriciojoc
http://secret.inf.ufpr.br
http://corvus.inf.ufpr.br
https://web.inf.ufpr.br/luizoliveira/
https://twitter.com/abedgregio
https://twitter.com/fabriciojoc
https://twitter.com/MarcusBotacin
https://www.heitorgomes.com/

