Shallow Security: on the Creation of Adversarial Variants to Evade Machine Learning-Based Malware Detectors
Who am I?

Background

- Computer Science Bachelor (Federal University of Paraná, Brazil, 2015).
- Machine Learning Researcher (Since 2015).
- Computer Science Master (Federal University of Paraná, Brazil, 2017).
- Computer Science PhD Candidate (Federal University of Paraná, Brazil).

Research Interests

- Machine Learning applied to Security.
- Machine Learning applications:
 - Data Streams.
 - Concept Drift.
 - Adversarial Machine Learning.
Introduction

Motivation, the problem, initial concepts and our work.
The Problem

- **Malware Detection**: growing research field.
 - Evolving threats.
- **State-of-the-art**: machine learning-based approaches.
 - Malware classification in families;
 - Malware detection;
 - Dense volume of data (data stream).
- **Arms Race**: attackers VS defenders.
 - Both of them have access to ML.
The Problem

- **Defenders**: developing new classification models to overcome new attacks.
- **Attackers**: generating malware variants to exploit the drawbacks of ML-based approaches.
- **Adversarial Machine Learning**: techniques that attempt to fool models by generating malicious inputs.
 - Making a sample from a certain class being classified as another one.
 - Serious problems for some scenarios, like **malware detection**.
Adversarial Examples

x

```
"panda"
57.7% confidence
```

\[
+ .007 \times \text{sign}(\nabla_x J(\theta, x, y))
\]

```
"nematode"
8.2% confidence
```

\[
= \frac{x}{\epsilon} \text{sign}(\nabla_x J(\theta, x, y))
\]

```
"gibbon"
99.3% confidence
```
Adversarial Examples

- **Image Classification**: adversarial image should be similar to the original one and yet be classified as being from another class.
- **Malware Detection**: adversarial malware should behave the same and yet be classified as goodware.
- **Challenge**: automatically generating a fully functional adversarial malware may be difficult.
 - Any modification can make it behave different or not work.
Our Work: How did everything start?

- **Machine Learning Static Evasion Competition**: modify fifty malicious binaries to evade up to **three** open source malware models.
- Modified malware samples must retain their **original functionality**.
- **The prize**: NVIDIA Titan-RTX.
Our Work: What did we do?

- We bypassed all the three models creating modified versions of the 50 samples originally provided by the organizers.
- Implemented an automatic exploitation method to create these samples.
- Adversarial samples also bypassed real anti-viruses as well.
- **Objective:** investigate models robustness against adversarial samples.
- **Results:** models have severe weaknesses so that they can be easily bypassed by attackers motivated to exploit real systems.
 - Insights that we consider important to be shared with the community.
The Challenge

Rules, dataset and models.
The Challenge: How did it work?

- **Fifty** binaries are classified by three distinct ML models.
- Each bypassed model for each binary accounts for **one point** (150 points in total).
- All binaries are executed on a **sandboxed environment** and must produce the same **Indicators of Compromise** as the original ones.
- Our team figured among the **top-scorer** participants.
 - Second position!

<table>
<thead>
<tr>
<th>Nickname</th>
<th>Total best score per user</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will</td>
<td>150</td>
</tr>
<tr>
<td>deep_secret</td>
<td>150</td>
</tr>
<tr>
<td>Jakub</td>
<td>133</td>
</tr>
</tbody>
</table>
Dataset: Original Malware Samples

- **Fifty** PE (Portable Executable) samples of varied malware families for Microsoft Windows.
 - Diversified approaches to bypass sample’s detection.
- **VirusTotal & AVClass**: 21 malware families.
- Real malware samples executed in sandboxed environments.
Corvus: Report Example

Creation Date: Oct. 19, 2019, 2:23 a.m.
Last Update: Oct. 19, 2019, 6:04 a.m.

Results:

File

Trace

- 19/10/2019 - 5:45:45.309
 - Open
 - 80
 - C:\malware.exe
 - C:\dlmapi.dll

- 19/10/2019 - 5:45:45.309
 - Open
 - 80
 - C:\malware.exe
 - C:\Windows\SysWow64\dlmapi.dll

- 19/10/2019 - 5:45:45.309
 - Open
 - 80
 - C:\malware.exe
 - C:\Windows\SysWow64\dlmapi.dll

- 19/10/2019 - 5:45:45.309
 - Open
 - 80
 - C:\malware.exe
 - C:\Windows\Fonts\StaticCache.dat

Process

Trace
Machine Learning Models: LightGBM

- Gradient boosting decision tree using a feature matrix as input.
- Hashing trick and histograms based on binary files characteristics (PE header information, file size, timestamp, imported libraries, strings, etc).

Input → **Feature Extraction** → **Classification** → **Output**

- Goodware
- Malware
Machine Learning Models: MalConv

- End-to-end deep learning model using raw bytes as input.
- Representation of the input using an 8-dimensional embedding (autoencoder).
- Gated 1D convolution layer, followed by a fully connected layer of 128 units.
- Softmax output for each class.
Machine Learning Models: Non-Negative MalConv

- Identical structure to MalConv.
- **Only non-negative weights**: force the model to look only for malicious evidences rather than looking for both malicious and benign ones.
Dataset used to Train the Models

- Ember 2018 dataset.
- Benchmark for researchers.
- 1.1M Portable Executable (PE) binary files:
 - 900K training samples;
 - 200K testing samples.
- Open Source dataset:
 - https://github.com/endgameinc/ember
Corvus: Classifying Samples Submitted Using Machine Learning Models

Report #702

Creation Date: Oct. 19, 2019, 2:23 a.m.
Last Update: Oct. 19, 2019, 6:44 a.m.
File: 050
Results:

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Confidence</th>
<th>Suspicious</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>KNN (K=3, NFS-BRAMalware)</td>
<td>100.00%</td>
<td>False</td>
</tr>
<tr>
<td></td>
<td>SVC (Kernel=Linear, NFS-BRAMalware)</td>
<td>49.88%</td>
<td>False</td>
</tr>
<tr>
<td></td>
<td>Random Forest (100 estimators, NFS-BRAMalware)</td>
<td>61.00%</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>LightGDM (Emb: File Characteristics, Threshold=0.8336)</td>
<td>100.00%</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>Decision Tree (NFS-BRAMalware)</td>
<td>100.00%</td>
<td>False</td>
</tr>
<tr>
<td></td>
<td>MalConv (Emb: Raw Bytes, Threshold=0.5)</td>
<td>99.92%</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>Non-Negative MalConv (Emb: Raw Bytes, Threshold=0.35)</td>
<td>58.13%</td>
<td>True</td>
</tr>
</tbody>
</table>

Conclusion
Biased Models?

- How does these models perform when classifying files of a pristine Windows installation?
- **Raw data:** high False Positive Rate (FPR) when handling benign data.

<table>
<thead>
<tr>
<th>FileType</th>
<th>MalConv</th>
<th>Non-Neg. MalConv</th>
<th>LightGBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXEs</td>
<td>71.21%</td>
<td>87.72%</td>
<td>0.00%</td>
</tr>
<tr>
<td>DLLs</td>
<td>56.40%</td>
<td>80.55%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>
Model’s Weaknesses

Series of experiments to identify model’s weaknesses.
Appending Random Data

- Generating growing chunks of random data, up to the limit of 5MB defined by the challenge.
 - MalConv, based on raw data, is more susceptible to this strategy.
 - Severe for chunks greater than 1MB.
 - Some features and models might be more robust than others.
 - Non-Neg. MalConv and LightGBM were not so affected.

[Graph showing the bypassed samples for different model sizes]
Appending Goodware Strings

- Retrieving strings presented by goodware files and appending them to malware binaries.
- All models are significantly affected when 10K+ strings are appended.
- Result holds true even for the model that also considers PE data (LightGBM), which was more robust in the previous experiment.
Changing Binary Headers

- Replacing header fields of malware binaries with values from a goodware.
 - Version numbers and checksums.
- Decision took by Microsoft when implementing loader: ignores fields.
- Bypassed only six samples.
- Model based on PE features learned other characteristics than header values.

```python
# open base gw
base_pe = pefile.PE(GW_BASE)
# iterate over output samples, changing their PE HEADER
for m in adv_list:
    # open adversarial sample
    m_pe = pefile.PE(m)
    # update adversarial header
    m_pe.OPTIONAL_HEADER.MajorLinkerVersion = base_pe.OPTIONAL_HEADER.MajorLinkerVersion
    m_pe.OPTIONAL_HEADER.MinorLinkerVersion = base_pe.OPTIONAL_HEADER.MinorLinkerVersion
    m_pe.OPTIONAL_HEADER.CheckSum = base_pe.OPTIONAL_HEADER.CheckSum
    m_pe.OPTIONAL_HEADER.MajorOperatingSystemVersion = base_pe.OPTIONAL_HEADER.MajorOperatingSystemVersion
    m_pe.OPTIONAL_HEADER.MinorOperatingSystemVersion = base_pe.OPTIONAL_HEADER.MinorOperatingSystemVersion
    m_pe.OPTIONAL_HEADER.MajorImageVersion = base_pe.OPTIONAL_HEADER.MajorImageVersion
    m_pe.OPTIONAL_HEADER.MinorImageVersion = base_pe.OPTIONAL_HEADER.MinorImageVersion
    # write updated sample
    m_pe.write(m)
```
Packing and Unpacking samples with UPX

- UPX compresses entire PE into other PE sections, changing the external PE binary’s aspect.
- Evaluated by packing and unpacking the provided binary samples.
- Classifiers easily bypassed when appending strings to UPX-extracted payloads, but not when directly appended to the UPX-packed payloads.
- **Bias against UPX packer:** any UPX-packed file is considered malicious.
- **Evaluation:** randomly picking 150 UPX-packed and 150 non-packed samples from malshare database and classified them.
Packing and Unpacking samples with UPX

- UPX-packed versions are more detected by all classifiers.
- Classifiers biased towards the detection of UPX binaries, despite their content.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>MalConv</th>
<th>Non-Neg MalConv</th>
<th>LightGBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originally Packed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPX</td>
<td>63.64%</td>
<td>55.37%</td>
<td>89.26%</td>
</tr>
<tr>
<td>Extracted UPX</td>
<td>59.50%</td>
<td>53.72%</td>
<td>66.12%</td>
</tr>
<tr>
<td>Originally Non-Packed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original</td>
<td>65.35%</td>
<td>54.77%</td>
<td>67.23%</td>
</tr>
<tr>
<td>UPX Packed</td>
<td>67.43%</td>
<td>56.43%</td>
<td>88.12%</td>
</tr>
</tbody>
</table>
Packing Samples with a Distinct Packer

- Bias against the popular UPX? Use another packer!
- **Evaluation:** packing provided samples with **TeLock**.
 - Compresses and encrypts the original binary sections into a new one;
 - The original content cannot be identified by the classifiers.
- Proven to be effective, bypassing all models when appending data.
- However, some samples such as the ones from the Extreme RAT family do not execute properly when packed with this solution.
Embedding Samples in a Dropper

- Embedding the binary in a new section, not encrypted nor compressed, avoiding unpacking issues.
- **Evaluation:** embedding samples in the Dr0p1t dropper.
- Along with data appendix, it bypassed all detectors without breaking sample’s execution.
- However, it generated binaries greater than 5MB, incompatible with the challenge rules.
Automatic Exploitation

Creating an automatic exploitation method.
Automating Models Exploitation

- Our findings about the models:
 1. Some samples (RATs) do not work well when data is appended.
 2. LightGBM detects when unusual headers and sections are present.
 3. LightGBM model can be bypassed by packing and/or embedding the original binary within a dropper with standard header and sections.
 4. Appending data to packed and embedded samples allows bypassing the Malconv models without affecting the dropped code execution.

- **Objective**: Generate variants able to bypass detection automatically.
Automating Models Exploitation

- Automated the process of packing/embedding all payloads within a new file.
 - Standard header and sections.
- Then, we append goodware data to this file.
- Maximum file size: 5MB.
 - TeLock and Dr0p1t were not an option.
- We implemented our own dropper.
 - Embedding the original malware sample as a PE binary resource.
Dropper

1. Retrieves a pointer to the binary resource (line 3 to 5);
2. Creates a new file to drop the resource content (line 7);
3. Drop the entire content (line 8 to 10);
4. Launches a process based on the dropped file (line 13).

- Bypass all models (data appending).

```c
int main(){
    HMODULE h = GetModuleHandle(NULL);
    HRSRC r = FindResource(h, ...);
    HGLOBAL rc = LoadResource(h,r);
    void* data = LockResource(rc);
    DWORD size = SizeOfResource(h,r);
    FILE *f = fopen("dropped.exe","wb");
    for(int i=0;i<size;i++){
        unsigned char c1 = ((char*)data)[i];
        printf(f,"%c",c1);
    }
    fclose(f);
    CreateProcess("dropped.exe", ...);
}
```
Adversarial Malware Generation: Definition

- To generate an adversarial malware (m_{w+}):
 - Original Malware (m_w);
 - Input malware file.
 - Embedding Function (f);
 - Generates an entirely new file with standard PE headers and section to host the original malware payload as a resource.
 - Goodware Samples (g_w);
 - Set containing n samples: all system files from a pristine Windows installation.
 - Extraction Function ($data$);
 - Retrieve strings and/or bytes information of a file.
Extracted chunks \(\text{data}(gw_i) \) are appended to the new file created using the function \(f(mw) \) to ensure a bias towards the goodware class.

Function outcome is an adversarial malware sample \((mw^+)\).

Possible to iterate this procedure so as to consider multiple goodware samples, thus repeatedly appending data to the end of \(f(mw) \).

\[
mw^+ = f(mw) + \sum_{i}^{n} \text{data}(gw_i)
\]
Adversarial Malware Generation: Scheme

x

“panda”
57.7% confidence

$+ 0.007 \times$

$\text{sign}(\nabla_x J(\theta, x, y))$

“nematode”
8.2% confidence

$= x + \epsilon \text{sign}(\nabla_x J(\theta, x, y))$

“gibbon”
99.3% confidence
Adversarial Malware Generation: Scheme

\[mw \rightarrow f(mw) + \sum_{i}^{n} data(gw_{i}) \Rightarrow gw_{i} = mw + \]

- **Malware**: 1011 0110, 91.69% avg confidence
- **Embedding Function**: f(mw)
- **Goodware Data**: \(\sum_{i}^{n} \) 1011 0110, 80.95% avg confidence
- **Goodware**: gw_{i} = 1011 0110, 93.28% avg confidence

Automatic Exploitation
Adversarial Malware Generation: Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Malware ((m_w))</th>
<th>Goodware ((g_{w,i}))</th>
<th>Adversarial Malware ((m_{w+}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class</td>
<td>Confidence</td>
<td>Class</td>
</tr>
<tr>
<td>MalConv</td>
<td>Malware</td>
<td>99.99%</td>
<td>Goodware</td>
</tr>
<tr>
<td>Non-Neg. MalConv</td>
<td>Malware</td>
<td>75.09%</td>
<td>Goodware</td>
</tr>
<tr>
<td>LightGBM</td>
<td>Malware</td>
<td>100.00%</td>
<td>Goodware</td>
</tr>
<tr>
<td>Average</td>
<td>Malware</td>
<td>91.69%</td>
<td>Goodware</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Goodware</td>
</tr>
</tbody>
</table>
Corvus: Malware Execution Graph (Using Execution Trace)

Original Malware

Adversarial Malware
Corvus: Original Samples Collection with ssdeep Similarity

Collection: Evade Malware ML (Original Samples)

Creation Date: Oct. 14, 2019, 2:30 p.m.
Update Date: Oct. 14, 2019, 6:38 p.m.
Created by: anonymous
Similarity Status: Finished
Reports:

<table>
<thead>
<tr>
<th>File 1</th>
<th>Similarity</th>
<th>File 2</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>c4447e503c7fd631c082283e5a (037)</td>
<td>85%</td>
<td>d3a3e3de3daa2a0a7358201e7a41f6 (039)</td>
<td>85%</td>
</tr>
<tr>
<td>d3a3e3de3daa20a73582281e7a41f6 (039)</td>
<td>85%</td>
<td>c4447e503c7fd631c082283e5a (037)</td>
<td>85%</td>
</tr>
<tr>
<td>9428cbf1406ec668827784c0d55bda (038)</td>
<td>65%</td>
<td>f6619932b3e9408f6e898843ea3d (035)</td>
<td>65%</td>
</tr>
<tr>
<td>f6619932b3e9408f6e898843ea3d (035)</td>
<td>65%</td>
<td>9428cbf1406ec668827784c0d55bda (038)</td>
<td>65%</td>
</tr>
<tr>
<td>12ee8889f3aada1a0d443167b3b8279e (013)</td>
<td>50%</td>
<td>534d13022f57a2d224d167b3b8279e (013)</td>
<td>50%</td>
</tr>
<tr>
<td>534d13022f57a2d224d167b3b8279e (013)</td>
<td>50%</td>
<td>12ee8889f3aada1a0d443167b3b8279e (013)</td>
<td>50%</td>
</tr>
<tr>
<td>0b72e579011d2b15e6ac1b80f0451a (027)</td>
<td>44%</td>
<td>fce486c4967850e346753b1488a (017)</td>
<td>44%</td>
</tr>
<tr>
<td>fce486c4967850e346753b1488a (017)</td>
<td>44%</td>
<td>0b72e579011d2b15e6ac1b80f0451a (027)</td>
<td>44%</td>
</tr>
</tbody>
</table>
Collection: Evade Malware ML (Adversarial Samples)

Creation Date: Oct. 11, 2019, 4:56 p.m.
Update Date: Oct. 13, 2019, 5:43 p.m.
Created by: anonymous
Similarity Status: Finished

| REPORTS | SIMILARITY | GRAPHICS | File 1 | | File 2 | | Similarity |
|---------|-------------|-----------|--------|--------|--------|----------|
| 308318aaaf7cd9e76e9a48c839ecad (007) | e5e21320ed3f845dabba2c5d626e28e8 (003) | 97% |
| 11da9941fed91a25c054045ad4604f1 (003) | 44718c856b17db945423f3facecabc12b (016) | 97% |
| 11da9941fed91a25c054045ad4604f1 (003) | 9de02875a6a0561473117b799d6a95 (032) | 97% |
| 11da9941fed91a25c054045ad4604f1 (003) | 1b8f9247397c5c2b6037971d00e6d468 (034) | 97% |
| 11da9941fed91a25c054045ad4604f1 (003) | 32ae04638767806930c760f6991779 (047) | 97% |
| 44718c856b17db945423f3facecabc12b (016) | 11da9941fed91a25c054045ad4604f1 (003) | 97% |
| 44718c856b17db945423f3facecabc12b (016) | 9de02875a6a0561473117b799d6a95 (032) | 97% |
| 44718c856b17db945423f3facecabc12b (016) | 1b8f9247397c5c2b6037971d00e6d468 (034) | 97% |

Automatic Exploitation

- **Introduction**
- **The Challenge**
- **Model’s Weaknesses**
- **Automatic Exploitation**
- **Discussion**
- **Conclusion**
Could our strategy be leveraged in real world by actual attackers?

VirusTotal service: detection rates for adversarial samples.

Results: our approach also affected real AV engines.
 - Sample 6 dropping almost in half.

Explanation: AV engines also powered by ML models.
 - Subject to same weaknesses and biases.
- **Drawback**: binaries become larger than the original ones.
 - Additional data appended.
- Appended data is not even used by the malware.
 - Must be there to create a bias towards goodware class.
- Adversarial malware are, in general, at least around twice the size of original ones.
 - **Original**: around 1.5MB;
 - **Adversarial**: around 5MB.
Discussion

Weaknesses identified and pinpoint possible mitigation.
Susceptibility to Appended Data

- Major weakness of raw models.
- This simple strategy was enough to defeat the two raw data-based models.
- Concept learned by these models is not robust enough against adversarial attacks.
Appending Data Affects Detection but not PE Loading

- Windows loader ignores some PE fields and resolve them in runtime.
- Allows attackers to append content to the binaries without affecting their functionalities.
- More strict loading policies so as to mitigate the impact of this type of bypass technique.
- Loader should check if a binary has more sections than declared and/or if the section content exceeds the boundaries defined in its header.
Adversarial Malware are Much Bigger than Original Ones

- Additional data are needed to bypass classifiers, such as strings and bytes.
- Bias towards goodware class but also make their size greater.
- Can make it difficult for attackers to distribute them for new victims.
- **Challenge to be considered by any attacker**: sample with the minimum size as possible.
Develop Models Based on the Presence of Features Instead on Frequency

- Mitigate the impact of appended data on classification models.
- Classifiers changed decision from malware to goodware when goodware strings were added to the binary, masking the impact of malware strings.
- Malicious strings need to be still present in the binaries to keep its functional.
Domain-specific Models Might Present Biases and not Learn a Concept

- Model based on PE binaries features presented a bias against UPX packer.
- Packing benign software with UPX revealed that the detector learned to mistakenly always flag UPX binaries as malicious.
Adopting Malware Variants Robustness as a Criteria to Machine Learning Detectors

- Accuracy, F1 Score and Precision for what??
- Essential step to moving forward the malware detection field.
- Even deep learning models might be easily bypassed: less effective.
- Adoption of variants robustness testing as a criteria for future malware detectors.
- Process of correct evaluating a malware detector, which already includes handling concept drift and evolution, class imbalance, degradation, etc.
Malware Detection & Data Stream Challenges: How to Correctly Evaluate them?

- Malware Detection (Data Stream)
 - Imbalanced Data
 - Evolution
 - Drift
 - Delayed Label
 - Adversarial
Creating a Robust Representation

- Essential step for malware detection.
- Attackers might include goodware characteristics into their malware to evade any model.
- Representation that is invariant to these characteristics is fundamental to avoid adversarial malware.
Checking File Resources and Embedded PE Files

- It should be part of ML feature extraction procedures.
- Allow classifiers to detect embedded malicious payload instead of being easily deceived by malware droppers.
- Example: https://corvus.inf.ufpr.br/reports/5378/#Static
 - Foremost & PEDetector
Converting Samples into Downloaders

- It might be a successful strategy.
- Malicious payload is retrieved from the Internet, undetected loader is submitted to ML.
- Reason about the whole threat model to cover all attack possibilities.
- **Downloader versions**: implemented but not submitted due to network-isolated sandboxes.
Adversarial Malware is a Particular Case of Adversarial Attacks

- Can be performed against multiple domains.
- **Same goal:** bypassing a classification.
- **Different techniques:** domain-specific.
- Adversarial images: look similar to the original ones (indistinguishable to human eye).
- Adversarial malware: same action as the original, even if they are different.
- Simply adding a noise to a malware might generate an invalid malware that does not work.
Conclusion

Final remarks, reproducibility and our online platform.
Models leveraging raw binary data are easily evaded by appending additional data to the original binary files. Models based on the Windows PE file structure learn malicious section names as suspicious. These detectors can be bypassed by replacing them. Suggestion: Adoption of malware variant-resilience testing as an additional criteria for the evaluation and assessment of future developments of ML-based malware detectors. Applied to actual scenarios without the risk of being easily bypassed by attackers.
- **Dropper**: prototype to embed malware samples into unsuspicious binaries released as open source on github.
 - https://github.com/marcusbotacin/Dropper
All analysis reports of evasive and non-evasive samples execution and their similarities are available on the Corvus platform, developed by our research team.

- https://corvus.inf.ufpr.br
Shallow Security: on the Creation of Adversarial Variants to Evade Machine Learning-Based Malware Detectors

Contact: fjoceschin@inf.ufpr.br or @fabriciojoc
Website: secret.inf.ufpr.br
Our Project: corvus.inf.ufpr.br