
SD-WAN Secure 
Communication Designs and 
Vulnerabilities
Denis Kolegov
@dnkolegov

DeepSec 2019



# whoami

● Ph.d, associate professor at Tomsk State University
● Principal security researcher at BI.Zone LLC
● SD-WAN New Hope and AIsec team member
● https://twitter.com/dnkolegov



Disclaimers

● Please note, this is my personal talk
● I don't speak for my employers
● These thoughts, jokes and opinions are my own
● No SD-WAN were “harmed” in the making of this research
● Some SD-WAN vendors or product names are hidden



Agenda

● SD-WAN New Hop(e) Project

● SD-WAN Essence

● Vulnerabilities

● Secure Design Aspects

● Conclusions





SD-WAN New Hop(e) Project

● Citrix / Talari
● Versa
● SilverPeak
● RiverBed
● Fortinet
● Cisco / Viptela
● VMWare / Velocloud
● Viprinet
● Brain4Net

● Checklists
○ SD-WAN Security Assessment

● Tools
○ SD-WAN Harvester
○ SD-WAN Infiltrator
○ Grinder Framework

● Papers
○ SD-WAN Internet Census
○ SD-WAN Threat Landscape
○ SD-WAN Practical Assessment

@sdnewhop 

https://github.com/sdnewhop/sdwannewhope/blob/master/sd-wan-security-assessment-the-first-hours.md
https://github.com/sdnewhop/sdwan-harvester
https://github.com/sdnewhop/sdwan-infiltrator
https://github.com/sdnewhop/grinder
https://arxiv.org/abs/1808.09027
https://arxiv.org/abs/1811.04583
https://medium.com/hackingodyssey/practical-security-assessment-of-sd-wan-implementations-c8aa51441c68
https://github.com/sdnewhop/


SD-WAN New Hop(e) Team

@sdnewhop 

● Sergey Gordeychik
● Alex Timorin
● Denis Kolegov
● Oleg Broslavsky
● Max Gorbunov

● Christoph Jaggi
● Nikita Oleksov
● Nikolay Tkachenko
● Anton Nikolaev

https://github.com/sdnewhop/


Practical Security Assessment of SD-WAN Implementations

https://bit.ly/2rD23kX

https://medium.com/hackingodyssey


SD Everywhere

SD-WAN

SD-LANSD-CORE

SD-V
PN

SD-Access

SD-DC

SD-SECURITY

Secure SD-WAN



SD-WAN News

● Cisco forges tighter SD-WAN links to Microsoft Azure 
cloud, Office 365

● SD-WAN is evolving into Secure Access Service Edge
● Tight Wi-Fi integration is key to successful SD-Branch
● Performance-Based Routing (PBR) – The gold rush for 

SD-WAN

Source: https://www.networkworld.com/category/sd-wan/

https://www.networkworld.com/category/sd-wan/


SD-WAN Essence



SDN-NFV/SD-WAN Vocabulary

● SDN: principle of physical separation of control plane from data plane
● Network Function (NF): functional block within a network infrastructure 

that has well-defined external interfaces and functional behavior
● Network Functions Virtualization(NVF): principle of separating network 

functions from hardware
● Virtualized Network Function(VNF): implementation of an NF that can be 

deployed using NFVI: DPI, IDPS, WAF, VPN
● SD-WAN is a specific application of SDN and NFV technologies to WAN 

connections



Traditional WAN vs Software-defined WAN

Source: http://www.abusedbits.com/2017/01/modern-network-areas-in-software-defined.html



Cisco Viptela SD-WAN Design

Source: Cisco SD-WAN Design Guide 

https://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/SDWAN/CVD-SD-WAN-Design-2018OCT.pdf


SDN vs SD-WAN

● While they share the same concept, they are two completely different 
usage environments

● SDN started out in datacenters (internal use), whereas SD-WAN is external 
use

● Different use, different requirements, especially for security
● This also has an impact on network security (underlay network and control 

plane)
● Networks are best protected at the lowest layer possible



Verizon SDN-NFV reference architecture



Vulnerabilities



Zero Touch Provisioning



Zero Touch Provisioning

● ZTP requires a known provisioning server
● If a management portal (UI) is cloud-based and vendor-controlled, it 

requires full trust to vendor
● Approaches

○ One-time tokens
○ Challenge-response protocols
○ Password-based authentication
○ Secret-based authentication (e.g., chassis serial numbers)

● Mutual authentication
○ An orchestrator authenticates an edge router
○ The edge router authenticates the orchestrator

● One of requirements is automated process for managing keys and 
certificates



Versa ZTP Bootstrapping with Hardcoded Password



Arista ZTP

● ZTPServer provides a bootstrap environment for Arista EOS based products
● Sources

○ https://github.com/arista-eosplus/ztpserver
○ https://ztpserver.readthedocs.io/en/master/index.html

● It is recommended to use Apache (mod_wsgi)
○ When do you say Apache, do you mean Slow HTTP DoS attacks?

https://github.com/arista-eosplus/ztpserver
https://ztpserver.readthedocs.io/en/master/index.html


Arista Zero Security Provisioning



Velocloud Activation Rollback



 Insecure Bootstrapping

1. A connected router establishes a secure channel with a controller over TLS
2. The router generates a public/private key pair and a CSR and send the CSR 

to the controller CA over TLS channel
3. The CA issues the certificate
4. The router uses the certificate on the control plane



CSR Generation on an Edge Device 



Certificate Generation on a CA server



ZTP URL Padding Oracle

link = “$(echo 
"ztp?ip=1.1.1.10&m=24&token=c28ds340df82g317402&dns=8.8.8.8" | openssl 
enc -e -aes-256-cbc -pbkdf2 -k PrettyGoodPreSharedKey -nosalt | base64 -w0”)

curl https://orchestrator/activate?$link

The activation script replies HTTP 500, if the encrypted link cannot be 
decrypted

Oracle



ZTP URL Padding Oracle

● Vulnerability to padding oracle attack
○ If an attacker has an encrypted ZTP link and access to ZTP service (oracle) he will recover 

the cleartext

● Malleability
○ There is no any authentication, an attacker, in theory, can change the encrypted ZTP URL 

so the new cleartext will contain a malicious DNS server address

● Solution
○ Use AEAD primitives (AES-GCM, ChaCha20-Poly1305, etc.)



SilverPeak Crypto Case



SilverPeak Crypto

● SilverPeak uses Racoon as an IPsec library
● No AEAD ciphers for data plane
● It uses TLS on the control and orchestration planes
● The main protocol is self-invented IKE-less IPsec over UDP
● Self-invented protocol for keys distribution via orchestrator
● There are no many clues how SilverPeak is implementing that protocol

https://www.silver-peak.com/sites/default/files/userdocs/silver-peak-whitepaper-ipsec-udp-1018_1.pdf


During a pentest...



Plugin Help

Password?!



Hardcoded Credentials



Successful Login



Why monitor’s password was not changed?

● Hard-coded credentials on the server-side
● Users do not know how to change credentials
● Users think that having read-only account with default passwords is safe

/rest/json/tunnelsConfigAndState



tunnelsConfigAndStates API Result



PSK



Nonce - number only used once?



Nonce - number only used once?



PoC

● Enumerate SilverPeak devices on the 
Internet (trivial)

● Use admin:admin or monitor:monitor 
credentials (ethical hacking)

● Get IPsec tunnel configurations and 
secrets



PoC on Burp Intruder



PoC Results

● November 2018
○ 571 SilverPeak devices
○ 380 alive
○ 150 devices have monitor:monitor user
○ 3 devices have admin:admin user

● May 2019
○ 601 SilverPeak devices
○ 396 alive
○ 184 devices have monitor:monitor user
○ 3 devices have admin:admin user

● November 2019
○ 954 SilverPeak devices
○ 490 alive
○ 168 devices have 

monitor:monitor user
○ 15 devices have admin:admin 

user



SilverPeak’s IPsec Key Management White Paper



Key Management Black Box Analysis

● Pre-shared keys are generated by the orchestrator
○ It is not possible to view, set or change a PSK using the WebUI

● PSK are the same on all tunnels within a domain
○ A spoke with more than 20 tunnels has the same PSK
○ 5d30a54c-3233-434e-8481-8bf6ac5efa5c

● If A and B are IPsec peers then A’s ipsec_nonce_in is equal to B’s 
ipsec_nonce_out

● “Nonces” are the same
● We did not see that PSK or nonces are changed



Hard-coded Credentials



Fortinet Hardcoded Keys



FG-IR-18-100: Hard-coded keys in FortiGuard



FG-IR-18-100: Hard-coded keys in FortiGuard

● SecConsult report
● Fortinet products, including FortiGate and Forticlient regularly send 

information to Fortinet servers (DNS: guard.fortinet.com) on
○ UDP ports 53, 8888 and
○ TCP port 80 (HTTP POST /fgdsvc)

● The messages are encrypted using XOR “encryption” with a static key
● The protocol messages contain the following types of information:

○ Serial number of the Fortinet product installation
○ Full HTTP URLs of users web surfing activity
○ Unspecified email data
○ Unspecified AntiVirus data

https://sec-consult.com/en/blog/advisories/weak-encryption-cipher-and-hardcoded-cryptographic-keys-in-fortinet-products/


FG-IR-19-007: Hard-coded keys in Fortinet SD-WAN



FG-IR-19-007: Hard-coded keys in Fortinet SD-WAN

● FortiGate and FortiManager store passwords in encrypted format. The following 
command sets a password “test” for the admin user

config system admin user
    edit "admin"
        set password ENC 
NzIyMjg3MTg2MTI1MjQ0MVdSZNNjo34BASXf0rFqWojteb6vF0dHmhzcDAsWzUzEpLcE35aMZx+7z16mdyra/eSco3TgN3CF0/8agm00Ve
12mBsMyQFqu2KRAJWOv8opm9laO2/t/c79al9OO4ANDjnzqONY3XYo682U7oFCsX7vlfs2

● It’s base64 encoding of IV and encrypted password
 
7222871861252441WRd\xd3c\xa3~\x01\x01%\xdf\xd2\xb1jZ\x88\xedy\xbe\xaf\x17GG\x9a\x1c\xdc\x0c\x0b\x16\xcdL\x
c4\xa4\xb7\x04\xdf\x96\x8cg\x1f\xbb\xcf^\xa6w*\xda\xfd\xe4\x9c\xa3t\xe07p\x85\xd3\xff\x1a\x82m4U\xedv\x98\
x1b\x0c\xc9\x01j\xbbb\x91\x00\x95\x8e\xbf\xca)\x9b\xd9Z;o\xed\xfd\xce\xfdj_N;\x80\r\x0e9\xf3\xa8\xe3X\xddv
(\xeb\xcd\x94\xee\x81B\xb1~\xef\x95\xfb6

● The key used to encrypt the password is the same for all devices
● So it makes possible to decrypt a password from any configuration file if an attacker 

has one



Citrix Hard-coded RSA Keys



Overview

● All Citrix NetScaler SD-WAN appliances used the same pre-installed RSA 
key pair and the corresponding self-signed certificate

● This certificate was used in Controller - Orchestrator communication 
protocol

● An attacker in MitM position can use the private key to perform 
eavesdropping and spoofing attacks against all edge routers



CVE-2019-11550

● https://support.citrix.com/article/CTX247735
● This  vulnerability could allow an unauthenticated attacker to perform a 

man-in-the-middle attack against management traffic. The vulnerability has 
been assigned the following CVE number.

● CVE-2019-11550 – Information Disclosure in Citrix SD-WAN Appliance 
10.2.x before 10.2.2 and NetScaler SD-WAN Appliance 10.0.x before 
10.0.7.

● Affected Versions:
○ All versions of NetScaler SD-WAN 9.x *
○ All versions of NetScaler SD-WAN 10.0.x earlier than 10.0.7
○ All versions of Citrix SD-WAN 10.1.x *
○ All versions of Citrix SD-WAN 10.2.x earlier than 10.2.2

https://support.citrix.com/article/CTX247735


Controller - Orchestrator Protocol

appliance_keys
sdwan_center_cert

appliance_keys
sdwan_center_cert

appliance_keys
sdwan_center_cert

TLS channel 
(TLS_RSA_WITH_AES_256_CBC_SHA,

mutual auth, whitelisting)

Server on TCP/2156

Client

appliance_keys appliance_keys appliance_keys

SD-WAN Center

SD-WAN 
Controllers

SD-WAN Edge 
Routers



Design Summary

● The “appliance_keys” certificate
○ Pre-installed on all SD-WAN appliances (controller, orchestrator, network elements, etc.)
○ Used for traffic encryption with TLS_RSA_WITH_AES_256_CBC_SHA cipher suite

● The “sdwan_center_cert” certificate
○ Generated on the SD-WAN Center
○ It must be manually installed on all controllers

● TLS
○ TLS_RSA_WITH_AES_256_CBC_SHA
○ PFS is not enforced

● A custom protocol is used to communicate between SD-WAN Center and 
other SD-WAN appliances over TLS

● It is worth noting, that this protocol also has a password-based 
authentication feature (PSK)



What is protocol used for?

● Download configs from virtual WAN appliances 
(get_config_file_chunk FILENAME)

● Download a list of configs (get_available_configs)
● Ping (ping)
● Get info (get_appliance_info)
● Get management IP address (get_network_mgt_ip_address)
● Get SSO token (get_sso_token)
● Upload config (initiate_config_upload FILENAME, 

put_config_file_chunk FILENAME, finalize_config_upload 
FILENAME)



Versa Hardcoded Passwords



Why do versa devops use “versa123”?



Versa Hard-coded Passwords

● Versa Analytics Driver REST API (/opt/versa/bin/versa-analytics-driver) 
uses the hardcoded credentials located at the 
/opt/versa/var/van-app/properties/application.properties file

● The credentials are used to perform HTTP Basic Authentication
● The credentials are equal to 

vanclient:88347b9e8s6$90d9f31te366&d5be77 and they are the same for 
all Versa Analytics deployments



Cleartext Communications



Versa Analytics TCP 1234 Service Cleartext Communications



B4N SD-WAN Secure Communications

● No crypto approach
● Unprotected

○ TCP 830 (GRPC)
○ TCP 5000 (API)
○ TCP 6653 (OpenFlow)
○ TCP 27017 (Mongo)

● No mutually authenticated
● There is no ready to use decisions for some protocols (e.g., OpenFlow)
● Brain4Net says we have tested a deployment without secure 

communications



B4N GRPC

Easily seen command patterns => 
no additional encryption under L7 protocol



B4N OpenFlow

The same here: 
L7 proto over plain TCP



TLS Vulnerability Measurements



Overview

● The research began with “Scalable Scanning and Automatic Classification 
of TLS Padding Oracle” paper

● Investigated scope
○ Alexa top million websites
○ The CBC padding oracle attack

● What about SD-WAN deployments on the Internet?
○ Probably, they are not in Alexa top websites

https://github.com/RUB-NDS/TLS-Padding-Oracles
https://github.com/RUB-NDS/TLS-Padding-Oracles


Method

1. Run TLS-Attacker against the appropriate interfaces from the SD-WAN 
Knowledge Database.

2. If vulnerabilities were found, rescan the node two times to minimize false 
positives.

3. If the vulnerabilities are still present, check them using PoC scripts in 
Python.

4. Save the confirmed results to the database.



We scanned 7200 SD-WAN nodes

Attack Number of vulnerable nodes

Sweet32 1873

CBC Padding Oracle 121

CRIME 30

Logjam 29

DROWN 14

ROBOT 6

Heartbleed 1



Some Results

Product Attacks Version

Talari SD-WAN Sweet32 r6_1_ga_p6_11032017

Nuage SD-WAN VNS Bleichenbacher,
Breach

SilverPeak Unity Edge 
Connect

Breach

Cisco SD-WAN Breach

Citrix NetScaler SD-WAN Bleichenbacher,
Sweet32

Citrix SD-WAN Center SSL Poodle

Versa Flex VNF Bleichenbacher 20161214-191033-494bf5c-
16.1r2



Some Results

Product Attacks Version

Sonus SBC Management 
Application

Bleichenbacher,
Breach

r6_1_ga_p6_11032017

Sonus SBC Management 
Application

Sweet32 5.0

FortiGate SD-WAN SSL Poodle,
Sweet32,
EarlyCcs

RiverBed Steel Head Padding Oracle,
CVE-20162107,
Sweet32

0.15.8



Secure Design



Scope

● Orchestration plane
● Zero-touch provisioning
● Bringup protocols
● Control plane
● Data plane protection

○ Encrypted overlays
○ VPN virtual functions



Peculiarities

● Huge number of interfaces, services, protocols and data flows
● Different platforms 
● SD-WAN edge devices (uCPE) often do not have HSM modules (TPM, 

secure microcontrollers)
● CPE (uCPE) devices without hardware-backed crypto are like cloud 

instances



SD-WAN Bringup with SPIRE



SD-WAN Bringup

● SD-WAN Bringup
○ All entities authenticate each other
○ Edge routers must securely join the SD-WAN
○ All entities establish secure communication channels between each other
○ All entities have identities in cryptographic sence

● Cisco defines and describes own bringup security protocol very thoroughly
● Let’s see how we can do the same using existing projects

https://www.cisco.com/c/en/us/td/docs/routers/sdwan/configuration/sdwan-xe-gs-book/cisco-sd-wan-overlay-network-bringup.html#c_Step_6__Deploy_the_vEdge_Routers_7881.xml


Authentication

● The following methods are used
○ TLS client authentication 
○ Challenge-response protocols
○ Token-based - We check that a router possess a token

● HSM-backed routers should use the first two methods
● Cloud routers should use a token-based method due to the fact that the 

private key can be stolen easily



Token-based Authentication 

● If a CPE doesn’t have a HSM/TPM or another hardware-backed secure 
storage an identity key can be easily obtained or copied

● In this case CPE should be considered as a virtual node
● The main authentication method here is based on join token conception



SPIFFE and SPIRE

● SPIFFE - The Secure Production Identity Framework For Everyone
● SPIFFE ID

○ X509
○ JWT

● SPIRE - SPIFFE Runtime Environment
● SPIRE 101
● Examples

○ SPIFFE
○ SPIRE

https://github.com/spiffe/spire/blob/master/doc/SPIRE101.md
https://github.com/spiffe/spiffe-example
https://github.com/spiffe/spire-examples


SPIRE Node Attestation Example



SPIRE Workflow Attestation Example



SD-WAN Architecture



Securing SD-WAN with SPIRE

● Design document (commented by Evan Gilman)
● The goal is to implement scalable identification of SD-WAN entities
● Mappings

○ SPIRE Server is deployed on the SD-WAN Controller 
○ SPIRE Agent is deployed on each SD-WAN edge device, controller, orchestrator, analytic 

systems, etc.
○ SPIRE workloads are SD-WAN processes (points) which need an identity

https://docs.google.com/document/d/1GHht7kFWAOS8KVDWUlInWmc1I62J3UrQLqEotW-nQvM


Node Attestors

SPIRE Attestor Applicability within 
SD-WAN

Join token Cloud only

x509pop, sshpop, tpm On-prem, cloud

aws_iid, azure_msi, gcp_iit Cloud-based SD-WAN: 
Azure, GCP, AWS



Keys

● Machine identity
○ PKC key pair, long-term, X509
○ The identity may refer to a customer or a purpose
○ The certificate is issued by customer’s CA
○ Stored in TPM or in persistent memory

● Agent identity (SPIRE native)
○ PKC key pair, short-term, in SVID format
○ The identity refers to a SPIRE Agent on a machine
○ The certificate is issued by SPIRE CA or Upstream CA

● Workload identity (SPIRE native)
○ PCK key pair, short-term, in SVID format
○ The identity refer to a service on a concrete machine with a SPIRE Agent
○ The certificate is issued by SPIRE CA or Upstream CA
○ Stored in memory or on disk



Assumptions

● X509pop attestor is used
● Each SD-WAN node gets the following credentials on a provisioning phase

○ A machine key and the corresponding certificate issued by a vendor or customer CA
○ A trust bundle CA certificate

● SPIRE Server has the machine key CA certificate
● Any interaction with a controller begins with establishing trust through 

SPIRE
○ SPIRE
○ ZTP 



SPIRE commands

Server-side
#spire-server entry create -node -spiffeID  
spiffe://sdwan.com/router1 -selector 
x509pop:subject:cn:example.com

#spire-server entry create -ttl 96 -spiffeID 
spiffe://sdwan.com/router1/ztp -parentID 
spiffe://example.com/router1 -selector unix:uid:1000

Agent-side
# spire-agent run -conf agent.conf &
# su -c "./cmd/spire-agent/spire-agent api fetch x509 " 
ztp -write ./svid/

 



Securing SD-WAN with SPIRE

● Pros
○ Unified and common mechanism for entire SD-WAN infrastructure
○ It can be reused in or integrated with cloud native (Kubernetes) or service mech (Istio, 

Envoy) systems
○ SPIRE is a root of trust
○ SPIRE already has strong authentication methods leveraging TPM, SSH keys or X509 

certificates
○ You can implement a new crypto protocol and add it to SPIRE 

● Cons
○ Depends on 3rd party SPIFFE/SPIRE framework
○ Developed SD-WAN will inherit SPIFFE/SPIRE features



Key Management



Crypto in SD-WAN

● Crypto for SD-WAN is still in its infancy
● There are no known specific standards (RFC, ISO, etc.)
● Vendors have to invent key distribution protocols
● SD-WAN vendors do not reuse mechanisms from cloud native projects



Key Management Overview

● Control plane
○ TLS/DTLS, SSH
○ ZTP

● Data plane and cryptographic overlays
○ IPsec
○ WireGuard / nQUIC/ Noise
○ PQC protocols
○ IKE-less IPsec
○ SSH
○ Custom cryptographic protocols (like Cisco OMP)

● How to manage cryptographic keys?



Why peer-to-peer key exchange is not the case within SDN/SD-WAN?

Source: https://www.ietf.org/archive/id/draft-carrel-ipsecme-controller-ike-01.txt

● SDN mainly use peer-to-controller trust model
● Latency
● Entropy generation on a CPE may be not a good idea
● Complexity (key rotation)
● Network shape is not persistent

https://www.ietf.org/archive/id/draft-carrel-ipsecme-controller-ike-01.txt


SD-WAN Key Management Drafts

● Software-Defined Networking (SDN)-based IPsec 
Flow Protection

● IPsec Key Exchange using a Controller
● A YANG Data Model for SD-WAN VPN Service 

Delivery

https://tools.ietf.org/html/draft-abad-i2nsf-sdn-ipsec-flow-protection-03
https://tools.ietf.org/html/draft-abad-i2nsf-sdn-ipsec-flow-protection-03
https://datatracker.ietf.org/doc/draft-carrel-ipsecme-controller-ike/?include_text=1
https://tools.ietf.org/id/draft-sun-opsawg-sdwan-service-model-01.html
https://tools.ietf.org/id/draft-sun-opsawg-sdwan-service-model-01.html


SDN-based IPsec Management

● One controller, IKE/IPsec in the NSF
○ Controllers deliver credentials (PSK, private keys, certificates) to edge devices over secure 

channels
○ Edge devices perform IKE (or another key exchange protocol) and then IPsec

● One controller, IPsec in the NSF
○ Controllers deliver credentials (PSK, private keys, certificates) to edge devices over secure 

channels
○ Edge devices perform IKE (or another key exchange protocol)

● Two controllers, IKE/IPsec in the NSF
○ Controllers negotiate credentials and deliver them to edge devices over secure channels
○ Edge devices run IPsec

● Two controllers, IPsec in the NSF
○ Controllers perform key exchange and deliver session (transport) keys to edge devices 

over secure channels
○ Edge devices run IPsec



SDN-based Flow Protection 



SDN-based Flow Protection Problems

● The main problem is that one peer (controller) dictates the key entirely - an 
edge router does not contribute to the key

○ If a controller’s PRNG is compromised, subverted or insecure there is no chance to get a 
key with strong cryptographic properties

○ We know such incidents (Juniper, Fortinet)

● The security of the protocol must be analysed
● It is bad crypto hygiene to use data channel for keys
● Designing a secure mechanism that uses this approach is not necessarily 

straightforward



SDN-based Flow Protection Insecure Protocol

● The controller has a weak PRNG
● Two protocols are used between controller and edge routers: TLS 1.3 and a 

protocol within the Noise protocol framework
● The controller generates “random” Curve25519 private key for Noise and 

send it over TLS-channel
● An attacker can predict the Noise private key due to weak PRNG
● An edge router receives the private key, generates the public key and 

establishes a new channel using a Noise protocol
● If a chosen Noise protocol pattern or its implementation is vulnerable to 

KCI attack then an attacker can impersonate the controller



SDN-based Flow Protection Insecure Protocol

● KCI - Key Compromise Impersonation
● KCI is a weakness of an authenticated key exchange protocol that allows 

an attacker who has compromised the secret credentials of a client to 
impersonate any peer to the client

● For example, in WireGuard
○ The handshake responder cannot assume the connection is authentic until they have 

received at least one valid data packet; otherwise, they are vulnerable to key-compromise 
impersonation (KCI)



Key distribution and rotation tools for WireGuard

Source: https://lists.zx2c4.com/pipermail/wireguard/2018-May/002904.html

https://lists.zx2c4.com/pipermail/wireguard/2018-May/002904.html


Key Export

● A and B have already established a TLS channel
● A and B need a new secret key
● k = PRF(master_secret)
● Is it secure?



RFC 5705

● RFC 5705 Keying Material Exporters for Transport Layer Security (TLS)
● Requirements

○ Both client and server need to be able to export the same EKM value
○ EKM values should be indistinguishable from random data to attackers who don't know the 

master_secret
○ It should be possible to export multiple EKM values from the same TLS/DTLS
○ Knowing one EKM value should not reveal any useful information about the master_secret 

or about other EKM values

● Designing a secure mechanism that uses exporters is not necessarily 
straightforward

https://tools.ietf.org/html/rfc5705


RFC 5705

K = PRF(SecurityParameters.master_secret, label,
              SecurityParameters.client_random +
               SecurityParameters.server_random +
               context_value_length + context_value
               )[length]



Security of Key Exporters

● Safely Exporting Keys from Secure Channels: On the Security of EAP-TLS 
and TLS Key Exporters

● TLS-like protocols is a protocol as follows:
○ Authenticated and confidential channel establishment (ACCE)
○ The handshake includes a random nonce from each party
○ Each party maintains a value called the master secret during the handshake.
○ The session (exported) key is derived from the master secret, the nonces, and possibly 

some other public information

● The session key is indistinguishable from random from any party other 
than the two protocol participants

https://eprint.iacr.org/2016/087.pdf
https://eprint.iacr.org/2016/087.pdf


Security of Key Exporters

● An ACCE protocol is a protocol executed between two parties. The 
protocol consists of two phases, called the ‘pre-accept’ phase and the 
’post-accept’ phase

● Pre-accept phase. In this phase a ‘handshake protocol’ is executed. Both 
communication parties are mutually authenticated, and a session key k is 
established. However, it need not necessarily meet the security definition 
for AKE protocols.

● Post-accept phase. In this phase data can be transmitted, encrypted and 
authenticated with key k.

● It was shown that
○ TLS_RSA is ACCE secure
○ TLS_DH is ACCE secure

https://eprint.iacr.org/2011/219.pdf
https://eprint.iacr.org/2013/367.pdf


Key Distribution Design

● Good
○ Key export within peer-to-peer model

● Not known
○ A custom protocol over secure channel (TLS-like protocol)
○ SDN-based IPsec management

● Bad
○ Use some constants (e.g., certificates) as a PSK 



Conclusions



Design Philosophy

● When a vendor is developing a new product it should consider and take 
into account modern requirements, state-of-art technologies, attacks, etc.

● There are no guaranteed ways to succeed, but there are easy ways to fail: 
“insecure by design” approach is one of them



Thanks!
dnkolegov@gmail.com

https://twitter.com/dnkolegov

https://github.com/sdnewhop

 


