

THE PLAN

- 1. What is data science?
- 2. Using data science to tackle a security problem
 - Machine learning only makes sense when a list of requirements is met
- 3. Assessing data science solutions

WHAT IS DATA SCIENCE?

"Buzzword jargon buzzword, hyperbole buzzword buzzword, trite rhyming platitude... Yep, looks good."

Image credit: Anderson https://andertoons.

"...people think we are at Windows 10 era, while we're still all at MS-DOS"

-Garry Kasparov

Want to reduce the number of devices that get infected with malware

- 1. Not machine learning
- 2. Machine learning

Data: <u>https://www.kaggle.com/c/microsoft-malware-prediction</u>

count	HasDetections	AVProductsEnabled
44	0	0
20	1	0
4761	0	1
4954	1	1
143	0	2
75	1	2
1	0	3
1	1	3
1	0	4

AVProductsEnabled	HasDetections	count	perc
0	0	44	68.8
0	1	20	31.2
1	0	4761	49.0
1	1	4954	51.0
2	0	143	65.6
2	1	75	34.4
3	0	1	50.0
3	1	1	50.0
4	0	1	100.0

Applying business context

OrganizationIdentifier	AVProductsEnabled	HasDetections	count
18	1	0	3
27	1	0	14
37	1	1	3

Applying business context

OrganizationIdentifier	AVProductsEnabled	HasDetections	count
18	1	0	3
27	1	0	14
37	1	1	3

Applying business context

OrganizationIdentifier	AVProductsEnabled	HasDetections	count
18	1	0	3
27	1	0	14
37	1	1	3

KEY TAKEAWAYS

- Look at how key characteristics affect outcome
- Focus on the part of the problem you care most about

APPLYING ML TO OUR PROBLEM

Goal:

- Be able to predict whether a device is going to have malware detections, or not
- Train a model to give us a true/false outcome, given information about the device (binary classification)

Logistic Regression	Binary Neural Network

	Logistic Regression	Binary Neural Network
Transparent	\checkmark	×

	Logistic Regression	Binary Neural Network
Transparent	\checkmark	×
Simple	\checkmark	×

	Logistic Regression	Binary Neural Network
Transparent	\checkmark	×
Simple	\checkmark	×
Efficient to train	\checkmark	×

	Logistic Regression	Binary Neural Network
Transparent	\checkmark	×
Simple	\checkmark	×
Efficient to train	\checkmark	×
Works without much data pre- processing	×	\swarrow

	Logistic Regression	Binary Neural Network
Transparent	\checkmark	×
Simple	\checkmark	×
Efficient to train	\checkmark	×
Works without much data pre- processing	×	\checkmark
Flexible (works well when true and false values can't be "easily" separated)	×	\checkmark

	Logistic Regression	Binary Neural Network
Transparent	\checkmark	×
Simple	\checkmark	×
Efficient to train	\checkmark	×
Works without much data pre- processing	×	\checkmark
Flexible (works well when true and false values can't be "easily" separated)	×	\swarrow
Performance can generally be improved with more training data	★*	\swarrow

⁴ Improves up to a certain point, after which more training data has no significant impact

	Logistic Regression	Binary Neural Network
Transparent	\checkmark	×
Simple	\checkmark	×
Efficient to train	\swarrow	×
Works without much data pre- processing	×	\swarrow
Flexible (works well when true and false values can't be "easily" separated)	×	\swarrow
Performance can generally be improved with more training data	★*	\swarrow
Not prone to overfitting	×	×

⁴ Improves up to a certain point, after which more training data has no significant impact

1.Logistic Regression

@thordisstella

Image credit: Anderson https://andertoons.com/

REQUIREMENTS

- Clearly formed research question
 - Bad: "What can I do to improve my AV program?"
 - Good: "Does having an AV product enabled decrease the chances of having a malware detection?"

Good quality data

- Bad: Only data from the UK, but solution will also be applied in the US
- Good: Making sure that training data is representative for the world where the solution will be applied
- Understanding overall potential to cause harm
 - Bad: Overwhelming the security analyst with alerts
 - Good: Consider impact of false positive and false negative predictions (e.g. overestimating number of malware detections vs. missing a critical detection)

WHEN REQUIREMENTS WEREN'T MET Fail: Face ID Defeated by a 3D Mask

Source: Lexalytics

ditched AI recruiting tool that favored men for technical jobs

Source: Guardian

Specialists had been building computer programs since 2014 to review résumés in an effort to automate the search process

Fail:for Oncology" Cancelled After \$62 millionand Unsafe Treatment RecommendationsSource: Lexalytics

KEY TAKEAWAYS

- Not all machine learning algorithms are created equal
 Pros and cons must align with your solution requirements
- Machine learning can only be applied when a list of requirements is met
 - Clearly formed research question
 - Good quality data
 - Understanding overall potential to cause harm

"Our solution provides unlimited information and insights driven by leading artificial intelligence."

CHEAT SHEET FOR DATA SCIENCE CONSUMERS

- "What do you mean?"
- "How specifically do you use [insert buzzword here]?"
- "Why did you choose to use [insert buzzword here]?"
- "How was the model trained?"
- "Can I validate the decisions being made?"
- "How do you minimize false positives/false negatives?"

Don't worry about asking naïve questions - ask about anything that is unclear

WHAT IT ALL BOILS DOWN TO

- Data science provides powerful tools to use in security
 - Stats can often give you great insight
 - Machine learning only makes sense when:
 - Requirements are met
 - Pros and cons of algorithm align with your use case
- You should ask about anything that's unclear for data science solutions you consider using
 - Many of the marketing statements you hear are meaningless
 - Use cheat sheet to assess solutions

Image credit: XKCD https://m.xkcd.com/552/