
Efficient Post-quantum Digital
Signature

Maksim Iavich

Private Key
Encryption

C
cyphe
r

K Kkeykey

mmessag
e

c := Enck(m)

Encryptio
n

Decryptio
n

m := Deck(c)
Deck(Enck(m)) = m

One-time pad

 M = {0,1}n

 Gen: k {0,1}n

 Enck(m) = k m

 Deck(c) = k c

 Truth:
Deck(Enck(m)) = k (k m)
 = (k k) m = m

0 1 = 1
0 0 = 0
1 0 = 1
1 1 = 1
A A = 0

One-time pad

key

n bits

message

n bits

Cipher text

n bits

One-time pad

Problems:

The size of the key must be the
same as message (quite large)

Is secure if one key is used once
to decrypt only one message.

Use key twice ?

 c1 = k m1
 c2 = k m2

 Attacker is able:
 c1 c2 = (k m1) (k m2) = m1 m2

 Leaks information about m1 and m2

Using the same key twice?

 m1 m2 is information about m1, m2

 Is this significant?
 No longer perfectly secret!

 m1 m2 reveals where m1, m2 differ

 Frequency analysis

 Exploiting characteristics of ASCII…

Source: http://benborowiec.com/2011/07/23/better-ascii-table/

 Letters all begin with
01…

 The space character
begins with 00…

 XOR of two letters
gives 00…

 XOR of letter and
space gives 01…

 Easy to identify XOR
of letter and space!

In pictures…

10… 01… 01… 11…

10… 01… 01… 10…

00… 00… 00… 01…

…

…

…

01…

00…

0101000
0

01010000 = 00100000 ?? 01010000 = 00100000 ‘p’

PRGs

 G – defined polynomial time algorithm

 G increases: |G(x)| = p(|x|) > |x|

seed

G

output

“Pseudo” one-time pad

“pseudo”
key

p bits

G

key

n bits

cipher
text

p bits

message

p bits

By means of this key size is
increased

Public-key encryption

pk, skpk

c Encpk(m) m = Decsk(c)

c

pk
pk

“Plain” RSA encryption

m = [cd mod N]

(N, e, d) RSAGen(1n)
pk = (N, e)

sk = d

N, e

c = [me mod N]

c

Digital signatures

 Digital signatures have become a key technology for making the Internet and

other IT infrastructures secure. Digital signatures provide authenticity,

integrity and non-repudiation of data. Digital signatures are very widely used

in the identification and the authentication protocols. So, the existence of

secure digital signature algorithms is obligatory for cyber security. The digital

signature algorithms that are used in practice today are RSA , DSA and ECDSA .

 GOOGLE Corporation, in conjunction with with the company D-
Wave signed contract about creating quantum computers. D-Wave
2X - is the newest quantum processor, which contains physical
qubits.

 Each additional qubit doubles the data search area, thus is also
significantly increased the calculation speed. Quantum computers
will destroy systems based on the problem of factoring integers
(e.g., RSA). RSA cryptosystem is used in different products on
different platforms and in different areas.

Quantum computers

RSA system is widely used in operating systems from Microsoft, Apple, Sun, and Novell. In
hardware performance RSA algorithm is used in secure phones, Ethernet, network cards, smart
cards, and is also widely used in the cryptographic hardware. Along with this, the algorithm is a
part of the underlying protocols protected Internet communications, including S / MIME, SSL
and S / WAN, and is also used in many organizations, for example, government, banks, most
corporations, public laboratories and universities.

News from Google

 Google made a huge revelation on October 23, 2019, when it announced that it

had reached something called “quantum supremacy.” Via an article in the

journal Nature, Google said their quantum computer, called Sycamore, solved a

particularly difficult problem in 200 seconds. For comparison, Google said the

world’s current fastest classical computer — one called Summit owned by IBM

that’s as big as two basketball courts — would take 10,000 years to solve that

same problem. This is what “quantum supremacy” means. It’s when a quantum

computer — one that runs on the laws of quantum physics as opposed to the

classical computers we’re familiar with (i.e. phones and laptops), which run on

classical physics like Newton’s laws of motion — does something that no

conventional computer could do in a reasonable amount of time.

IBM’s answer

 IBM responded to Google’s news to say that actually, Summit could solve the quantum

computers’ problem in two and a half days — not 10,000 years as Google had suggested. In

this episode of Recode’s Reset podcast, host Arielle Duhaime-Ross and Kevin Hartnett, a

senior writer for the math and physics magazine Quanta, break down exactly what

quantum computing is and why Google dunking on IBM both was and wasn’t a huge deal.

RSA ALTERNATIVES

Hash-based Digital Signature Schemes:

A code-based public-key encryption system

Lattice-based Cryptography: proofs are based on worst-case hardness.

Multivariate public key cryptosystem – MPKCs:

 To date are already found successful attacks on this crypto system.

 The Ph.D. candidate of Dublin City University (DCU) Neill Costigan with

the support of Irish Research Council for Science, Engineering and

Technology (IRCSET), together with professor Michael Scott, Science

Foundation Ireland (SFI) member successfully were able to carry out an

attack on the McEliece algorithm. To do this they needed 8,000 hours of

CPU time. In the attack representatives of four other countries took part.

Scientists have discovered that the initial length of the key in this

algorithm is insufficient and should be increased.

 This system cannot be also used to encrypt the same message twice and

to encrypt the message when is known it’s relation with the other

message.

Successful attacks

 Should be noted the importance of efficiency spectrum. To date experts have reached
quite good results in the speed algorithm processing. According to the investigation results
it becomes clear that the proposed post-quantum cryptosystems are relatively little
effective. Implementation of the algorithms requires much more time for their processing
and verification.

 Inefficient cryptography may be acceptable for the general user, but it cannot be
acceptable for the internet servers that handle thousands of customers in the second.
Today, Google has already has problems with the current cryptography. It is easy to
imagine what will happen when implementing crypto algorithms will take more time.

 The development and improvement of modern cryptosystems will take years. Moreover, all
the time are recorded successful attacks on them. When is determined the encryption
function, and it becomes standard, it needs the appropriate implementation of the
corresponding software, and in most cases, hardware.

RSA ALTERNATIVES – HASH BASED

 Traditional digital signature systems that are used in practice are vulnerable to quantum computers

attacks. The security of these systems is based on the problem of factoring large numbers and

calculating discrete logarithms. Scientists are working on the development of alternatives to RSA,

which are protected from attacks by quantum computer. One of the alternatives are hash based

digital signature schemes. These systems use a cryptographic hash function. The security of these

digital signature systems is based on the collision resistance of the hash functions that they use.

LAMPORT–DIFFIE ONE-TIME SIGNATURE
SCHEME (KEY GENERATION)

 Keys generation in this system occurs as follows: the signature key X of this
system consists of 2n lines of length n, and is selected randomly.

 X= (xn-1[0], xn-1[1], …, x0[0], x0[1]) {0,1} ∈ n,2n

 Verification key Y of this system consists of 2n lines of length n.

 Y= (yn-1[0], yn-1[1], …, y0[0], y0[1]) {0,1} ∈ n,2n

 This key is calculated as follows:

 yi[j] = f(xi[j]), 0<=i<=n-1, j=0,1

 f – is one-way function:

 f: {0,1} n {0,1} n;

 To sign a message m of arbitrary size, we transform it into size n using the
hash function:

 h(m)=hash = (hashn-1, … , hash0)

 Function h- is a cryptographic hash function:

 h: {0,1} *{0,1} n

 The signature is done as follows:

 sig= (xn-1[hash n-1], …, x0[hash0]) {0,1} ∈ n,n

 i-th string in this signature is equals to xi[0], if i-th bit in sign is equal to 0.
The string is equal to xi[1], if i-th bit in sign is equal to 1.

 Signature length is n2.

DOCUMENT SIGNATURE

DOCUMENT VERIFICATION

To verify the signature sig = (sign-1, …, sig0), is calculated hash of the message hash
= (hashn-1, … , hash0) and the following equality is checked:

(f(sign-1), …, f(sig0)) = (yn-1[hashn-1], …, y0[hash0])

If the equation is true, then the signature is correct.

WINTERNITZ ONE TIME SIGNATURE SCHEME.
KEY GENERATION

To achieve security O(280), the total size of public and private keys must be
160∗2∗160 bits = 51200 bits, that is 51200/1024=50 times larger than in the case
of RSA. We must also note that the size of the signature in the given scheme is
much larger than in the case of RSA. Winternitz One-time Signature Scheme was
proposed to reduce the size of the signature.

MERKLE

 One-time signature schemes are very inconvenient to use, because to sign each message, you
need to use a different key pair. Merkle crypto-system was proposed to solve this problem.
This system uses a binary tree to replace a large number of verification keys with one public
key, the root of a binary tree. This cryptosystem uses an one-time Lamport or Winternitz
signature scheme and a cryptographic hash function:

 h:{0,1}*{0,1}n

 Key generation: The length of the tree is chosen H>=2, with one public key it is possible to
sign 2H documents. 2H signature and verification key pairs are generated; Xi, Yi, 0<=i<=2H. Xi- is
signature key, Yi- is verification key. h(Yi) are calculated and are used as the leaves of the
tree. Each tree node is a hash value of concatenation of its children.

MERKLE TREE

SIGNATURE GENERATION

 To sign a message m of arbitrary size we transform it into size n using the
hash function

 h (m) = hash, and generate an one-time signature using any one-time key Xany,
the document's signature will be the concatenation of: one time signature,
one-time verification key Yany, index any and all fraternal nodes authi in
relation to Yany.

 Signature= (sig||pub||any|| Yany||auth0,…,authH-1)

 Signature verification:

 To verify the signature we check the one-time signature of sig using Yany, if it
is true, we calculate all the nodes a [i, j] using “authi”, index “any” and Yany.
We compare the last node, the root of the tree with public key, if they are
equal, then the signature is correct.

 Lamport Winternitz Merkle

Use f to
generate keys

2n p(2w-1) 2H+1-1

Use f to
calculate the
signature

Is not used p(2w-1)

Use f to
generate
verify the
signature

n p(2w-1)

PRNG INTEGRATION
 To generate a public key you need to calculate and store 2H pairs of one-time keys.

Storing this amount of information is not effective in practice. In order to save space, it
was suggested to use the PRNG random number generator. When using PRNG, it is
sufficient to store only the seed of the generator and use it to generate one-time keys. It
is necessary to calculate one-time keys twice: once in the key generation stage and then
in the signature stage of the message. PRNG receives a seed of length n and outputs a
new seed and a random number of length n.

 PRNG : {0, 1}n: {0, 1}n x {0, 1}n

 Key generation using PRNG:

 We choose randomly the seed s0 of length n, using si we work out soti, as following:

 PRNG(si) = (soti , si+1) 0 ≤ i <2H

 soti changes each time when PRNG launches. For Xi key calculation it is enough to know
only si.

PRNG INTEGRATION

CSPRNGs
 Pseudorandom number generators are widely used in Cryptography. This type

of PRNGs are called cryptographically secure pseudorandom number
generators CSPRNGs. Blum and Micali (Blum and Micali, 1984) and the Blum
Blum Shub generators (Blum et al., 1986) are often used in cryptography
applications. These CSPRNGs are based on number theory. Blum Blum Shub
works as follows: the output bits come from the recursive formula Xi+1 = X2

i
mod N for N = pq the product of two primes p and q congruent to 3 mod 4.

 Xi is the ith number used as the internal state. The algorithm has N and X0 as
inputs and the ith output bit is the parity of Xi. The initial state X0 should
come from a TRNG.

Breaking PRNG

 Quantum computers are able to crack PRNG, which were considered safe against attacks

of classical computers. A polynomial quantum time attack on PRNG Blum-Micali is shown.

This PRNG is considered safe from threats of standard computers. This attack uses Grover

algorithm along with the quantum discrete logarithm, and is able to restore the values at

the generator output for this attack. The attacks like these represent a threat of cracking

PRNG, used in many real-world crypto systems. As we see, Merkle crypto system with

built-in PRNG can be vulnerable to attacks of quantum computers.

HASH_DBRG and HMAC_DBRG

 As a CSPRNG in Merkle we offer an algorithm based on a hash function, as the
whole the algorithm is based on it. NIST has recommended two continuous
hash based PRNGs: HASH_DBRG and HMAC_DBRG. We offer to use HASH_DBRG
as it is more efficient.

 We offer to use physical quantum random number generator (QRNG) for
generating the seed for HASH_DBRG.

QRNGs

 In 1961 the researchers offered to use quantum phenomena as a source of

randomness . Afterwards the researchers began to work actively on it.

Radioactive decay was a particularly accessible source of true randomness.

Geiger-Muller tubes were already sensitive enough to capture and amplify α,

β and γ radiation, well-characterized radioactive samples were available.

Almost all radioactivity-based QRNGs were based on the detection of β

radiation.

Radioactivity-based quantum random
number generators

 In a Geiger-Muller detector, a single particle makes an ionization event that is amplified

in a Townsend avalanche. We get is a device that creates a pulse for each detected

particle. Any concrete atom’s probability to decay in a time interval (t, t + dt) can be

presented as exponential random variable, Pr(t)dt = λne^(−λnt)dt, where λn is a decay

constant. The time between detected pulses is an exponential random variable, if the

sample saves a lot of original atoms and the detector system does not change in this

time interval. The times values are independent from previous ones. The number of

pulses that occur in a concrete time period follows a Poisson distribution. It can be

shown experimentally, that the pulses occur at independent times. The probability of

finding n pulses in an period of T seconds is Pn(T) = (λT)n /n! * e−λT , where λ is a mean

number of pulses detected in one second and corresponds to the parameter of the

exponential distribution.

 QRNGs based on radioactive decay have many common features. Mostly they use digital

counters to convert the pulses from the detector into random values. The counter

increases the values of its output by 1 when it gets a pulse as an input and the counter

value can be reset to 0. Another important element is timing with a digital clock. If f is a

frequency of the clock. A fast clock, with f > λ, generates a big amount of pulses and a

slow clock, with f < λ, produces a pulse rarely, so many counts can be registered in

detector. The randomness in the time of arrival can be converted into random values in

some different ways. For example the generators of Isida and Ikeda and Vincent (Vincent,

1970)use a fast clock counter that is read and afterwards reset to zero every time we get

a count on the detector. The value of the counter at detection time is used to output the

random number. The distribution of values is not uniform so it must be corrected.

 Another option is to use a slow clock to determine when to read the counter.

For example in the generator of Schmidt, the pulses from the detector increase

the value of a counter. When the clock produces a new pulse, the value of the

counter is used as a random digit and the count resets again to 0. The output

corresponds to the number of particle counts in each clock period. In order to

generate values from 0 to V−1, we use modulo V operation. If V= 2 we get a

binary random number generator. The distribution of the values is not uniform,

but if we take the modulo V addition of multiple outputs, we receive a

distribution with very small bias. This procedure is called contraction.

Optical quantum random number
generators

 Today, almost all the existing QRNGs are based on quantum optics. Most
parameters of the quantum states of the light have rather good randomness
property. It gives us the opportunity of good choice of implementations. Light
from lasers, light emitting diodes or single photon sources is a convenient and
rather affordable alternative of radioactive material as a source of quantum
randomness and there exist many available detectors.

 Time of arrival generators, are representatives of optical quantum random
number generators (OQRNGs). These OQRNGs are based on the same basic
principles as the QRNGs that detect radioactive decay.

Time of arrival generators

 QRNG that uses time has a rather weak source of photons, it has a detector and timing

circuitry that traces the time of each detection or the clicks number in a concrete time

period. The detector receives photons from LED incoherent light and from the coherent

states from a laser in an exponentially distributed time λe−λt , where λ is an average

number of photons per second. The time between two detections is exponential as it is the

difference of two exponential random variables. We can compare the differences of the

time between the arrival of consecutive pulses, we will get two time differences t0 and t1

so we can compare them also. In order to get the random bit, if t1 > t0 we assign a 1 and if

t0 > t1 we can assign a 0. We take the integers with the number of the counted clock

periods c0 and c1 instead of the real times t0 and t1. We can get the case, where t0 = t1,

with some negligible probability for an ideal continuous time measurement and of course

this case must be taken into the consideration.

 In 2007 year was offered the first optical quantum random number
generator that uses time detection. It takes the photons from an LED
arriving at a PMT after it compares the arrivals times.

 We offer to use a time arrival generator as a seed of HASH_DBRG.

Improvements

 PHOTON COUNTING QUANTUM RANDOM NUMBER GENERATORS

Assign more then one bit during each measurement

 ATTENUATED PULSE QUANTUM RANDOM NUMBER GENERATORS

Are based on a simplified version of the previous methods have fewer requirements for detectors.

 Novel Generator

We offer the improved quantum random number generator, which is based the on time of arrival
QRNG. In time of arrival QRNGs at best, we get one random bit from each detected photon, this
probability is reduced by the inefficiency of the detector or by dead time. In most cases, the
frequency of random number generators is measured in Mbps, which is not enough for fast
applications such as QKD. If we use multiple detectors to generate more random bits, we will have
bias, generated by the different efficiencies of the detectors. Using one detector and comparing
three successful detection time events, we rule out this bias. It is also rather convenient to use
the simple version of the detectors with few requirements for this we offer to use the technology
used in Attenuated pulse Quantum Random Number Generators.

SHA2

 SHA-2 is a family of cryptographic hash functions created by United States
National Security Agency - NSA in 2001. These functions are constructed using
Merkle-Damgård structure and the one-way compression function created by
means of Davies–Meyer structure from the special block cipher. This family
includes the following hash functions: SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, SHA-512/256. These functions use the different amount of
shifts and additive constants, but they have the identical structure, which
differs in the number of rounds.

Integration of the SHA-2 Hash Function into the
Merkle Scheme

 It must be emphasized that efficiency is a very important aspect in cryptography.
Considering that the encryption scheme uses the hash function many times, we
analyzed the efficiency of Merkle’s signature using the integrated SHA-512 hash
function, and we compared it to the implementation that is based on the usage of
the SHA-256 hash function. The scheme is defined by the steps, which are
enumerated in the following pseudo code.

 The performance tests were performed on a machine that is powered by the
processor i7-8565U CPU. Thus, the implementation that considers the SHA-256
hashing model produced a key generation time of 0.2522974 seconds, a signature
time of 0.0004094000000000042seconds, and a verification time of
0.0025690000000000435 seconds. Furthermore, the implementation that considers
the SHA-512 hashing model produced a key generation time of 0.3956368 seconds,
a signature time of 0.0032782999999999562 seconds, and a verification time of
0.010349899999999912 seconds.

The BLAKE2 hash function

 The BLAKE2 is a family of cryptographic hash functions designed in 2012 by
Jean-Philippe Aumasson, Samuel Neves, Christian Winnerlein and Zooko
Wilcox-O'Hearn. This cryptographic scheme is considered to be rather
efficient, as it is faster than MD5, SHA-1, SHA-2, and SHA-3. It is also
considered rather secure, as its security is based on the immunity to length
extension, and the in differentiability from a random oracle [17]. The BLAKE2
family includes two main functions: BLAKE2b and BLAKE2s. Thus, BLAKE2s is
well optimized for the platforms of 8-bit and 32-bit, and it outputs hash
values between 1 and 32 bytes long. Furthermore, BLAKE2b is well optimized
for 64-bit platforms, which include NEON-enabled ARMs. It outputs the hash
values of the size between 1 and 64 bytes. In SSSE3 (Supplemental Streaming
SIMD Extensions 3)-capable CPUs, the arithmetic cost of the involved
processing is reduced by 12%.

The BLAKE3 hash function

 The BLAKE3 scheme is significantly more efficient than SHA-1, SHA-2, SHA-3,
and BLAKE2. In the context of BLAKE3, the number of rounds is reduced from
10 to 7. Thus, most block ciphers specify a round, which includes the building
blocks that are assembled together in order to design a cryptographic
function, which runs multiple times. The BLAKE3 scheme considers a binary
tree structure, in order to enable the use of parallelism, which is provided by
SIMD instructions that are included in most of the modern central processing
units. The BLAKE3 is a 128-bit security mechanism that can be used to
prevent preimage, collision, or differentiability attacks.

Offered scheme

 Key generation

 The size of the tree must be H>=2 and using one public key 2H document can be signed. Using
novel generator we generate a seed. The PRNG HASH_DBRG take the seed as the input and
are generated signature and verification keys; Xi, Yi, 0<=i<=2H. Xi- is the signature key, Yi- is
the verification key. To get the leaves of the tree, signature keys are hashed using the hash
function h:{0,1}*{0,1}n.

 To get the parent node, the concatenation of two previous nodes is hashed. The root of the
tree is the public key of the signature - public.

 Message signature

 To sign a message of any size, it is transformed to size of n by means of hashing.

 h (m) = hash, to sign the message, is used an arbitrary one-time key Xarb. This key is
calculated by means of PRNG HASH_DBRG using the same seed got from our novel generator.
The signature is a concertation of: one-time signature, one-time verification key, index of a
key and all brother nodes according to the selected arbitrary key with the index “arb”.

 Signature= (sig||arb|| Yarb||auth0,…,authH-1)

 Signature verification

 To verify the signature, an one-time signature is checked using the selected

verification key, if the verification has passed, all the needed nodes are

calculated using "auth", index "arb" and Yarb. If the root of the tree matches

the public key, then the signature is correct.

Integrating BLAKE2b

 Blake2b is used as one-way function, as the hash function.

The scheme performance was assessed on the same machine with an i7-8565U
CPU. Thus, the key generation time is 0.1879717 seconds, the signature time is
0.0002919000000000006 seconds, and the verification time is
0.001286700000000008 seconds. The results show that in the case of the
integration of BLAKE2b into the scheme, the system works even faster than in
the case of SHA-256.

Security

 Nothing is changed in the classical version of Merkle. In order to improve the

efficiency the hash based PRNG is integrated, the seed of PRNG is integrated

by means of Quantum Random Number Generator. As we can see this PRNG is

not vulnerable to attacks of quantum computers. As the hash function we use

blake2b, which is secure against attacks of quantum computers.

 As we can see the proposed implementation of improved Merkle is secure.

THANK YOU! QUESTIONS?

MAKSIM IAVICH
SCIENTIFIC CYBER SECURITY ASSOCIATION ; CAUCASUS UNIVERSITY

T. +(995 595) 511355; E-mail: m.iavich@scsa.ge

www.scsa.ge

Scientific&practical cyber security journal – www.journal.scsa.ge

mailto:m.iavich@scsa.ge

	Slide 1
	Slide 2
	One-time pad
	One-time pad
	One-time pad
	Use key twice ?
	Using the same key twice?
	Slide 8
	In pictures…
	PRGs
	“Pseudo” one-time pad
	Public-key encryption
	“Plain” RSA encryption
	Digital signatures
	Slide 15
	News from Google
	IBM’s answer
	RSA ALTERNATIVES
	Slide 19
	Slide 20
	RSA ALTERNATIVES – HASH BASED
	LAMPORT–DIFFIE ONE-TIME SIGNATURE SCHEME (KEY GENERATION)
	Slide 23
	DOCUMENT VERIFICATION
	WINTERNITZ ONE TIME SIGNATURE SCHEME. KEY GENERATION
	MERKLE
	MERKLE TREE
	SIGNATURE GENERATION
	Slide 29
	PRNG INTEGRATION
	Slide 31
	CSPRNGs
	Breaking PRNG
	HASH_DBRG and HMAC_DBRG
	QRNGs
	Radioactivity-based quantum random number generators
	Slide 37
	Slide 38
	Optical quantum random number generators
	Time of arrival generators
	Slide 41
	Improvements
	SHA2
	Integration of the SHA-2 Hash Function into the Merkle Scheme
	The BLAKE2 hash function
	The BLAKE3 hash function
	Offered scheme
	 Signature verification
	Integrating BLAKE2b
	Security
	THANK YOU! QUESTIONS?

