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One-time pad 

 M = {0,1}n

 Gen: k  {0,1}n

 Enck(m) = k  m               

 Deck(c) = k  c

 Truth:
Deck( Enck(m) ) = k  (k  m) 
                            = (k  k)  m = m

0  1 = 1
0  0 = 0
1  0 = 1
1  1 = 1
A  A = 0
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One-time pad

Problems:

The size of the key must be the 
same as message (quite large)

Is secure if one key is used once 
to decrypt only one message.   



Use key twice ?

 c1 = k  m1 
       c2 = k  m2 

 Attacker is able:
   c1  c2 = (k  m1)  (k  m2) = m1  m2

 Leaks information about m1  and m2



Using the same key twice?

 m1  m2 is information about m1, m2

 Is this significant?
 No longer perfectly secret!

 m1  m2 reveals where m1, m2 differ

 Frequency analysis

 Exploiting characteristics of ASCII…



Source: http://benborowiec.com/2011/07/23/better-ascii-table/

 Letters all begin with 
01…

 The space character 
begins with 00…

 XOR of two letters 
gives 00…

 XOR of letter and 
space gives 01…

 Easy to identify XOR 
of letter and space!



In pictures…

10… 01… 01… 11…

10… 01… 01… 10…

00… 00… 00… 01…

…
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0

01010000 = 00100000  ?? 01010000 = 00100000  ‘p’ 



PRGs

 G – defined polynomial time algorithm 

 G increases: |G(x)| = p(|x|) > |x|
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G
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“Pseudo” one-time pad

“pseudo” 
key

p bits
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By means of this key size is 
increased



Public-key encryption

pk, skpk

c  Encpk(m) m = Decsk(c)

c

pk
pk



“Plain” RSA encryption

m = [cd mod N]

(N, e, d)  RSAGen(1n)
pk = (N, e)

sk = d

N, e

c = [me mod N]

c



Digital signatures

 Digital signatures have become a key technology for making the Internet and 

other IT infrastructures secure. Digital signatures provide authenticity, 

integrity and non-repudiation of data. Digital signatures are very widely used 

in the identification and the authentication protocols. So, the existence of 

secure digital signature algorithms is obligatory for cyber security. The digital 

signature algorithms that are used in practice today are RSA , DSA and ECDSA .



 GOOGLE Corporation, in conjunction with with the company  D-
Wave signed contract about creating quantum computers. D-Wave 
2X - is the newest quantum processor, which contains physical 
qubits. 

 Each additional qubit doubles the data search area, thus is also 
significantly increased the calculation speed. Quantum computers 
will destroy systems based on the problem of factoring integers 
(e.g., RSA). RSA cryptosystem is used in different products on 
different platforms and in different areas. 

Quantum computers

RSA system is widely used in operating systems from Microsoft, Apple, Sun, and Novell. In 
hardware performance RSA algorithm is used in secure phones, Ethernet, network cards, smart 
cards, and is also widely used in the cryptographic hardware. Along with this, the algorithm is a 
part of the underlying protocols protected Internet communications, including S / MIME, SSL 
and S / WAN, and is also used in many organizations, for example, government, banks, most 
corporations, public laboratories and universities.



News from Google

 Google made a huge revelation on October 23, 2019, when it announced that it 

had reached something called “quantum supremacy.” Via an article in the 

journal Nature, Google said their quantum computer, called Sycamore, solved a 

particularly difficult problem in 200 seconds. For comparison, Google said the 

world’s current fastest classical computer — one called Summit owned by IBM 

that’s as big as two basketball courts — would take 10,000 years to solve that 

same problem. This is what “quantum supremacy” means. It’s when a quantum 

computer — one that runs on the laws of quantum physics as opposed to the 

classical computers we’re familiar with (i.e. phones and laptops), which run on 

classical physics like Newton’s laws of motion — does something that no 

conventional computer could do in a reasonable amount of time.



IBM’s answer

 IBM responded to Google’s news to say that actually, Summit could solve the quantum 

computers’ problem in two and a half days — not 10,000 years as Google had suggested. In 

this episode of Recode’s Reset podcast, host Arielle Duhaime-Ross and Kevin Hartnett, a 

senior writer for the math and physics magazine Quanta, break down exactly what 

quantum computing is and why Google dunking on IBM both was and wasn’t a huge deal.



RSA ALTERNATIVES

Hash-based Digital Signature Schemes: 

A code-based public-key encryption system

Lattice-based Cryptography: proofs are based on worst-case hardness.

Multivariate public key cryptosystem – MPKCs:



 To date are already found successful attacks on this crypto system.

 The Ph.D. candidate of Dublin City University (DCU) Neill Costigan with 

the support of Irish Research Council for Science, Engineering and 

Technology (IRCSET), together with professor Michael Scott, Science 

Foundation Ireland (SFI) member successfully were able to carry out an 

attack on the McEliece algorithm. To do this they needed 8,000 hours of 

CPU time. In the attack representatives of four other countries took part. 

Scientists have discovered that the initial length of the key in this 

algorithm is insufficient and should be increased.

 This system cannot be also used to encrypt the same message twice and 

to encrypt the message when is known it’s relation with the other 

message.

Successful attacks 



 Should be noted the importance of efficiency spectrum. To date experts have reached 
quite good results in the speed algorithm processing. According to the investigation results 
it becomes clear that the proposed post-quantum cryptosystems are relatively little 
effective. Implementation of the algorithms requires much more time for their processing 
and verification.

 Inefficient cryptography may be acceptable for the general user, but it cannot be 
acceptable for the internet servers that handle thousands of customers in the second. 
Today, Google has already has problems with the current cryptography. It is easy to 
imagine what will happen when implementing crypto algorithms will take more time.

 The development and improvement of modern cryptosystems will take years. Moreover, all 
the time are recorded successful attacks on them. When is determined the encryption 
function, and it becomes standard, it needs the appropriate implementation of the 
corresponding software, and in most cases, hardware.



RSA ALTERNATIVES – HASH BASED

 Traditional digital signature systems that are used in practice are vulnerable to quantum computers 

attacks. The security of these systems is based on the problem of factoring large numbers and 

calculating discrete logarithms. Scientists are working on the development of alternatives to RSA, 

which are protected from attacks by quantum computer. One of the alternatives are hash based 

digital signature schemes. These systems use a cryptographic hash function. The security of these 

digital signature systems is based on the collision resistance of the hash functions that they use.



LAMPORT–DIFFIE ONE-TIME SIGNATURE 
SCHEME (KEY GENERATION)

 Keys generation in this system occurs as follows: the signature key X of this 
system consists of 2n lines of length n, and is selected randomly.

 X= (xn-1[0], xn-1[1], …, x0[0], x0[1])  {0,1} ∈ n,2n

 Verification key Y of this system consists of 2n lines of length n. 

 Y= (yn-1[0], yn-1[1], …, y0[0], y0[1])  {0,1} ∈ n,2n

 This key is calculated as follows:

 yi[j] = f(xi[j]), 0<=i<=n-1, j=0,1

 f – is one-way function:

 f: {0,1} n {0,1} n;



 To sign a message m of arbitrary size, we transform it into size n using the 
hash function: 

 h(m)=hash = (hashn-1, … , hash0)

 Function h- is a cryptographic hash function:

 h: {0,1} *{0,1} n

 The signature is done as follows:

 sig= (xn-1[hash n-1],  …, x0[hash0])  {0,1} ∈ n,n

 i-th string in this signature is equals to xi[0], if i-th bit in sign is equal to 0. 
The string is equal to xi[1], if i-th bit in sign is equal to 1.

 Signature length is n2.

DOCUMENT SIGNATURE



DOCUMENT VERIFICATION

To verify the signature sig = (sign-1, …, sig0), is calculated hash of the message hash 
= (hashn-1, … , hash0) and the following equality is checked: 

(f(sign-1), …, f(sig0)) = (yn-1[hashn-1], …, y0[hash0]) 

If the equation is true, then the signature is correct.



WINTERNITZ ONE TIME SIGNATURE SCHEME.
KEY GENERATION

To achieve security O(280), the total size of public and private keys must be 
160∗2∗160 bits = 51200 bits, that is 51200/1024=50 times larger than in the case 
of RSA. We must also note that the size of the signature in the given scheme is 
much larger than in the case of RSA. Winternitz One-time Signature Scheme was 
proposed to reduce the size of the signature.



MERKLE 

 One-time signature schemes are very inconvenient to use, because to sign each message, you 
need to use a different key pair. Merkle crypto-system was proposed to solve this problem. 
This system uses a binary tree to replace a large number of verification keys with one public 
key, the root of a binary tree. This cryptosystem uses an one-time Lamport or Winternitz 
signature scheme and a cryptographic hash function:

 h:{0,1}*{0,1}n

 Key generation: The length of the tree is chosen H>=2,  with one public key it is possible to 
sign 2H documents. 2H signature and verification key pairs are generated; Xi, Yi, 0<=i<=2H. Xi- is 
signature key, Yi- is verification key.  h(Yi) are calculated and are used as the leaves of the 
tree. Each tree node is a hash value of concatenation of its children. 



MERKLE TREE



SIGNATURE GENERATION

 To sign a message m of arbitrary size we transform  it into size n using the 
hash function 

 h (m) = hash, and generate an one-time signature using any one-time key Xany, 
the document's signature will be the concatenation of: one time signature,  
one-time verification key Yany, index any and all fraternal nodes authi in 
relation to Yany.

 Signature= (sig||pub||any|| Yany||auth0,…,authH-1)

 Signature verification: 

 To verify the signature we check the one-time signature of sig using Yany, if it 
is true, we calculate all the nodes a [i, j] using “authi”, index “any” and Yany. 
We compare the last node, the root of the tree with public key, if they are 
equal, then the signature is correct.



  Lamport Winternitz Merkle

Use f to 
generate keys

2n p(2w-1) 2H+1-1 

Use f to 
calculate the 
signature

Is not used p(2w-1)

Use f to 
generate 
verify the 
signature

n p(2w-1)



PRNG INTEGRATION
 To generate a public key you need to calculate and store 2H pairs of one-time keys. 

Storing this amount of information is not effective in practice. In order to save space, it 
was suggested to use the PRNG random number generator. When using PRNG, it is 
sufficient to store only the seed of the generator and use it to generate one-time keys. It 
is necessary to calculate one-time keys twice: once in the key generation stage and then 
in the signature stage of the message. PRNG receives a seed of length n and outputs a 
new seed and a random number of length n.

 PRNG : {0, 1}n: {0, 1}n x {0, 1}n

 Key generation using PRNG:

 We choose randomly the seed s0 of length n, using  si we work out soti, as following:

 PRNG(si) = (soti , si+1)   0 ≤ i <2H

 soti changes each time when PRNG launches. For Xi key calculation it is enough to know 
only si. 



PRNG INTEGRATION



CSPRNGs
 Pseudorandom number generators are widely used in Cryptography. This type 

of PRNGs are called cryptographically secure pseudorandom number 
generators CSPRNGs. Blum and Micali (Blum and Micali, 1984) and the Blum 
Blum Shub generators (Blum et al., 1986) are often used in cryptography 
applications. These CSPRNGs are based on number theory. Blum Blum Shub 
works as follows: the output bits come from the recursive formula Xi+1 = X2

i 
mod N for N = pq the product of two primes p and q congruent to 3 mod 4. 

 Xi is the ith number used as the internal state. The algorithm has N and X0 as 
inputs and the ith output bit is the parity of Xi. The initial state X0 should 
come from a TRNG.



Breaking PRNG

 Quantum computers are able to crack PRNG, which were considered safe against attacks 

of classical computers. A polynomial quantum time attack on PRNG Blum-Micali is shown. 

This PRNG is considered safe from threats of standard computers. This attack uses Grover 

algorithm along with the quantum discrete logarithm, and is able to restore the values   at 

the generator output for this attack. The attacks like these represent a threat of cracking 

PRNG, used in many real-world crypto systems. As we see, Merkle crypto system with 

built-in PRNG can be vulnerable to attacks of quantum computers. 



HASH_DBRG and HMAC_DBRG

 As a CSPRNG in Merkle we offer an algorithm based on a hash function, as the 
whole the algorithm is based on it. NIST has recommended two continuous 
hash based PRNGs: HASH_DBRG and HMAC_DBRG. We offer to use HASH_DBRG 
as it is more efficient. 

 We offer to use physical quantum random number generator (QRNG) for 
generating the seed for HASH_DBRG.  



QRNGs

 In 1961 the researchers offered to use quantum phenomena as a source of 

randomness . Afterwards the researchers began to work actively on it. 

Radioactive decay was a particularly accessible source of true randomness. 

Geiger-Muller tubes were already sensitive enough to capture and amplify α, 

β and γ radiation, well-characterized radioactive samples were available. 

Almost all radioactivity-based QRNGs were based on the detection of β 

radiation.



Radioactivity-based quantum random 
number generators

 In a Geiger-Muller detector, a single particle makes an ionization event that is amplified 

in a Townsend avalanche. We get is a device that creates a pulse for each detected 

particle. Any concrete atom’s probability to decay in a time interval (t, t + dt) can be 

presented as exponential random variable, Pr(t)dt = λne^(−λnt)dt, where λn is a decay 

constant. The time between detected pulses is an exponential random variable, if the 

sample saves a lot of original atoms and the detector system does not change in this 

time interval. The times values are independent from previous ones. The number of 

pulses that occur in a concrete time period follows a Poisson distribution. It can be 

shown experimentally, that the pulses occur at independent times. The probability of 

finding n pulses in an period of T seconds is Pn(T ) = (λT)n /n! * e−λT , where λ is a mean 

number of pulses detected in one second and corresponds to the parameter of the 

exponential distribution.



 QRNGs based on radioactive decay have many common features. Mostly they use digital 

counters to convert the pulses from the detector into random values. The counter 

increases the values of its output by 1 when it gets a pulse as an input and the counter 

value can be reset to 0. Another important element is timing with a digital clock. If f is a 

frequency of the clock. A fast clock, with f > λ, generates a big amount of pulses and a 

slow clock, with f < λ, produces a pulse rarely, so many counts can be registered in 

detector. The randomness in the time of arrival can be converted into random values in 

some different ways. For example the generators of Isida and Ikeda and Vincent (Vincent, 

1970)use a fast clock counter that is read and afterwards reset to zero every time we get 

a count on the detector. The value of the counter at detection time is used to output the 

random number. The distribution of values is not uniform so it must be corrected.



 Another option is to use a slow clock to determine when to read the counter. 

For example in the generator of Schmidt, the pulses from the detector increase 

the value of a counter. When the clock produces a new pulse, the value of the 

counter is used as a random digit and the count resets again to 0. The output 

corresponds to the number of particle counts in each clock period. In order to 

generate values from 0 to V−1, we use modulo V operation. If V= 2 we get a 

binary random number generator. The distribution of the values is not uniform, 

but if we take the modulo V  addition of multiple outputs, we receive a 

distribution with very small bias. This procedure is called contraction.



Optical quantum random number 
generators

 Today, almost all the existing QRNGs are based on quantum optics. Most  
parameters of the quantum states of the light have rather good randomness  
property. It gives us the opportunity of good choice of implementations. Light 
from lasers, light emitting diodes or single photon sources is a convenient and 
rather affordable alternative of radioactive material as a source of quantum 
randomness and there exist many available detectors. 

 Time of arrival generators, are representatives of optical quantum random 
number generators (OQRNGs). These OQRNGs are based on the same basic 
principles as the QRNGs that detect radioactive decay. 



Time of arrival generators

 QRNG that uses time has a rather weak source of photons, it has a detector and timing 

circuitry that traces the time of each detection or the clicks number in a concrete time 

period. The detector receives photons from LED incoherent light and from the coherent 

states from a laser in an exponentially distributed time λe−λt , where λ is an average 

number of photons per second. The time between two detections is exponential as it is the 

difference of two exponential random variables. We can compare the differences of the 

time between the arrival of consecutive pulses, we will get two time differences t0 and t1 

so we can compare them also. In order to get the random bit, if t1 > t0 we assign a 1 and if 

t0 > t1 we can assign a 0. We take the integers with the number of the counted clock 

periods c0 and c1 instead of the real times t0 and t1. We can get  the case, where t0 = t1, 

with some negligible probability for an ideal continuous time measurement and of course 

this case must be taken into the consideration.



 In 2007 year was offered the  first optical quantum random number 
generator that uses time detection. It takes the photons from an LED 
arriving at a PMT after it compares the arrivals times.

 We offer to use a time arrival generator as a seed of HASH_DBRG.



Improvements

 PHOTON COUNTING QUANTUM RANDOM NUMBER GENERATORS 

Assign more then one bit during each measurement

 ATTENUATED PULSE QUANTUM RANDOM NUMBER GENERATORS 

Are based on a simplified version of the previous methods have fewer requirements for detectors. 

 Novel Generator

We offer the improved quantum random number generator, which is based the on time of arrival 
QRNG. In time of arrival QRNGs at best, we get one random bit from each detected photon, this 
probability is reduced by the inefficiency of the detector or by dead time. In most cases, the 
frequency of random number generators is measured in Mbps, which is not enough for fast 
applications such as QKD. If we use multiple detectors to generate more random bits, we will have 
bias, generated by the different efficiencies of the detectors. Using one detector and comparing 
three successful detection time events, we rule out this bias. It is also rather convenient to use 
the simple version of the detectors with few requirements for this we offer to use the technology 
used in Attenuated pulse Quantum Random Number Generators.



SHA2

 SHA-2 is a family of cryptographic hash functions created by United States 
National Security Agency - NSA in 2001. These functions are constructed using 
Merkle-Damgård structure and the one-way compression function created by 
means of Davies–Meyer structure from the special block cipher. This family 
includes the following hash functions: SHA-224, SHA-256, SHA-384, SHA-512, 
SHA-512/224, SHA-512/256. These functions use the different amount of 
shifts and additive constants, but they have the identical structure, which 
differs in the number of rounds. 



Integration of the SHA-2 Hash Function into the 
Merkle Scheme

 It must be emphasized that efficiency is a very important aspect in cryptography. 
Considering that the encryption scheme uses the hash function many times, we 
analyzed the efficiency of Merkle’s signature using the integrated SHA-512 hash 
function, and we compared it to the implementation that is based on the usage of 
the SHA-256 hash function. The scheme is defined by the steps, which are 
enumerated in the following pseudo code.

 The performance tests were performed on a machine that is powered by the 
processor i7-8565U CPU. Thus, the implementation that considers the SHA-256 
hashing model produced a key generation time of 0.2522974 seconds, a signature 
time of 0.0004094000000000042seconds, and a verification time of 
0.0025690000000000435 seconds. Furthermore, the implementation that considers 
the SHA-512 hashing model produced a key generation time of 0.3956368 seconds, 
a signature time of 0.0032782999999999562 seconds, and a verification time of 
0.010349899999999912 seconds.



The BLAKE2 hash function

 The BLAKE2 is a family of cryptographic hash functions designed in 2012 by 
Jean-Philippe Aumasson, Samuel Neves, Christian Winnerlein and Zooko 
Wilcox-O'Hearn. This cryptographic scheme is considered to be rather 
efficient, as it is faster than MD5, SHA-1, SHA-2, and SHA-3. It is also 
considered rather secure, as its security is based on the immunity to length 
extension, and the in differentiability from a random oracle [17]. The BLAKE2 
family includes two main functions: BLAKE2b and BLAKE2s. Thus, BLAKE2s is 
well optimized for the platforms of 8-bit and 32-bit, and it outputs hash 
values between 1 and 32 bytes long. Furthermore, BLAKE2b is well optimized 
for 64-bit platforms, which include NEON-enabled ARMs. It outputs the hash 
values of the size between 1 and 64 bytes. In SSSE3 (Supplemental Streaming 
SIMD Extensions 3)-capable CPUs, the arithmetic cost of the involved 
processing is reduced by 12%. 



The BLAKE3 hash function

 The BLAKE3 scheme is significantly more efficient than SHA-1, SHA-2, SHA-3, 
and BLAKE2. In the context of BLAKE3, the number of rounds is reduced from 
10 to 7. Thus, most block ciphers specify a round, which includes the building 
blocks that are assembled together in order to design a cryptographic 
function, which runs multiple times. The BLAKE3 scheme considers a binary 
tree structure, in order to enable the use of parallelism, which is provided by 
SIMD instructions that are included in most of the modern central processing 
units. The BLAKE3 is a 128-bit security mechanism that can be used to 
prevent preimage, collision, or differentiability attacks. 



Offered scheme

  Key generation

 The size of the tree must be H>=2 and using one public key 2H document can be signed. Using 
novel generator we generate a seed.  The PRNG HASH_DBRG take the seed as the input and 
are generated signature and verification keys; Xi, Yi, 0<=i<=2H. Xi- is the signature key, Yi- is 
the verification key.  To get the leaves of the tree, signature keys are hashed using the hash 
function h:{0,1}*{0,1}n.

 To get the parent node, the concatenation of two previous nodes is hashed. The root of the 
tree is the public key of the signature  - public.

 Message signature

 To sign a message of any size, it is transformed to size of n by means of hashing. 

  h (m) = hash, to sign the message, is used an arbitrary one-time key Xarb. This key is 
calculated by means of  PRNG HASH_DBRG using the same seed got from our novel generator. 
The signature is a concertation of: one-time signature, one-time verification key, index of a 
key and all brother nodes according to the selected arbitrary key with the index “arb”.

 Signature= (sig||arb|| Yarb||auth0,…,authH-1)



 Signature verification

  To verify the signature, an one-time signature is checked using the selected 

verification key, if the verification has passed, all the needed nodes are 

calculated using "auth", index "arb" and Yarb. If the root of the tree matches 

the public key, then the signature is correct.



Integrating BLAKE2b

 Blake2b is used as one-way function, as the hash function.

The scheme performance was assessed on the same machine with an i7-8565U 
CPU. Thus, the key generation time is 0.1879717 seconds, the signature time is 
0.0002919000000000006 seconds, and the verification time is 
0.001286700000000008 seconds. The results show that in the case of the 
integration of BLAKE2b into the scheme, the system works even faster than in 
the case of SHA-256. 



Security

 Nothing is changed in the classical version of Merkle. In order to improve the 

efficiency the hash based PRNG is integrated, the seed of PRNG is integrated 

by means of Quantum Random Number Generator. As we  can see this PRNG is 

not vulnerable to attacks of quantum computers. As the hash function we use 

blake2b, which is secure against attacks of quantum computers.

 As we can see the proposed implementation of improved Merkle is secure.
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