
www.arrowhead.eu

Secure Onboarding Procedure 

in the Eclipse Arrowhead Framework

Silia Maksuti 

20/11/2020 



www.arrowhead.eu

Digitalization and Automation Requirements

01 For example, additional stakeholders or exchange

of one or more stakeholders adds complexity, this

should be supported by digitalization and

automation platforms

Interoperability

03 > 100000 IoT’s, dependencies between IoT’s, SoS

will be very dynamic

Scalability

05 Increasing the number of devices involved in

automation systems is engineering cost

Engineering costs

02
Security is a main concern because:

▪ more and more devices will be connected, which can 

increase the vulnerabilities for remote network-based 

attacks, and 

▪ use of general-purpose platforms, which can increase 

the vulnerabilities for viruses and software flaws

Security

04The sensors and actuators in a control loop are in close

proximity to each other, thus, the real time requirements

related to control have to be fulfilled between the point

of data measurement and the point of actuation

Real-time performance



www.arrowhead.eu

Eclipse Arrowhead Framework

▪ Eclipse Arrowhead is an open-source framework, which is

build based on System of Systems principles and features:

• Interoperability (achieved through SoA principles)

• Integrability

• Independence

▪ The Arrowhead framework facilitates the creation of local

automation clouds, which enable:

• Real-time performance

• Security

• Engineering complexity reduction

• Inter-cloud service exchange that enables (security)-

controlled collaborations



www.arrowhead.eu

▪ To take advantage of IoT, several industries are adopting existing technologies such as service-oriented

architecture (SoA) to increase productivity, reduce operating costs and automatically carry out processes

▪ SoA is a technology that allows applications to be registered as services and provides automation of

industrial systems

▪ SoA is about information exchange between a service producer and a service consumer

Service-oriented Architecture

Service 

consumer
Service 

producer

Application

service

IoT System A IoT System B

Exchange of information



www.arrowhead.eu

▪ Two SoA systems do not need to know about each other at design time to allow a run time data exchange

▪ The identification of available services is established at run-time making use of a service registry system and

its discovery mechanisms

▪ A new SoA service will register itself in the service registry and it will be discoverable by any other service in

the network

SoA Properties - Loosely coupling

ServiceRegistry

Service registrationService discovery

Service 

consumer

Service 

producer
Data exchange



www.arrowhead.eu

▪ In a SoA system the exchange of data between two systems is established in runtime

▪ The run-time coupling is initiated by an orchestration system, which provides the endpoint of the selected

producer to the requesting consumer

▪ If necessary, the authorisation system is consulted to check if the service consuming system can be

authenticated and authorised to consume the requested service

SoA Properties - Late binding

ServiceRegistry

Service registrationService discovery

Data exchange

OrchestrationAuthorisation

Authorisation

Authentication
Orchestration

Service

consumer

Service

provider



www.arrowhead.eu

Pull Behaviuor

▪ In a SoA environment the data exchange can be initiated by a service consumer requesting data

• A pull behaviour can for e.g., be controlled by a timer at the service consumer, thus creating data pulling of a sensor

every 100 ms

Push Behaviuor

▪ The data exchange can also be initiated by a producer that knows about conditional data request

• This is initiated by a data subscription under certain criteria. For e.g., a pressure sensor will push its pressure reading

service to a consumer whenever the pressure reading is higher than 2 bar, data is then pushed from the producer to the

consumer

SoA Properties - Lookup



www.arrowhead.eu

Arrowhead Local Cloud

▪ The native environment of Arrowhead is the industrial

automation domain, e.g. a factory, where a limited

number of interconnected sensors, controllers and

actuators work together on effectively assembling

products - this motivates the local automation cloud

approach

▪ In order to define an Arrowhead local cloud the three

mandatory core systems

• ServiceRegistry system

• Orchestration system

• Authorization system

and at least one application system deployed are required



www.arrowhead.eu

▪ ServiceRegistry System

• provides storage of all active services registered within a local cloud and enables the discovery of them

▪ Authorization System

• provides authentication, authorization and optionally accounting of service interactions

▪ Orchestrator System

• provides a mechanism for distributing orchestration rules and service consumption patterns, thus providing service

endpoints to specific requests

Arrowhead Mandatory Core Systems



www.arrowhead.eu

Arrowhead Support Core Systems

Released

Release 

candidates

Prototypes

Separately 

released

Secure infrastructure: 

Interoperability

Inter cloud service exchange

System of Systems support

Execution support

Management support:

Supply chain/product life cycle

Local cloud basic properties: 

Engineering tools

<<system>>

SystemRegistry

<<system>>

DeviceRegistry

<<system>>

EventHandler
<<system>>

DataManger

<<system>>

QoS

<<system>>

Translation

<<system>>

Gatekeeper

<<system>>

Gateway

<<system>>

Configuration
<<system>>

PlantDescription

<<system>>

WorkflowManager

<<system>>

WorkflowExecutor

<<system>>

ManagementTool

<<system>>

TestTool

<<system>>

Contract Proxy

<<system>>

Semantics

<<system>>

SecurityMitigation

<<system>>

SecurityManager

<<system>>

ConsumerCodeGen

<<system>>

SafetyManager

<<system>>

Choreography

<<system>>

ServiceRegistry 
<<system>>

Authorisation

<<system>>

Orchestration 

<<system>>

LegacyIntegration

<<system>>
61499

<<system>>

Installation

<<system>>

CI/CD pipeline

<<system>>

On-boarding

<<system>>

SecurityCompliance

<<system>>

WSO2+CPN

<<system>>

OrchestrationMitigation

<<system>>
FiWare

<<system>>
OPC-UA

<<system>>
BaSyx

<<system>>

Eclipse-Keycloack

<<system>>

Eclipse-Hono

<<system>>
Eclipse-Vorto

<<system>>
Eclipse-hawkBit

<<system>>
Eclipse-Ditto

<<system>>
ModbusTCP

<<system>>
ROS

<<system>>

Eclipse-Kura

<<system>>

Eclipse-Kapua

<<system>>
SysML 1.6 profile

<<system>>
SysML 2 profile

<<system>>

SandboxingTool

Control support
<<system>>

ControlStrategy

<<system>>

CertificateAuthority

<<system>>

Python lib

<<system>>

Kalix lib (Java)
<<system>>

Evopro lib C++)

<<system>>

Eng process

<<system>>

Tool chain interoperability

<<system>>

Training material

A
rr

o
w

h
ea

d
 v

4
.2



www.arrowhead.eu

▪ Native Arrowhead Capabilities (ML3)

▪ Software Adapters (ML2)

▪ Hardware Adapters (ML1)

Maturity Levels of Arrowhead Integration



www.arrowhead.eu

A Comparison of Industrial IoT Frameworks

Paniagua, Cristina, and Jerker Delsing. "Industrial Frameworks for Internet of Things: A Survey." IEEE Systems Journal (2020)



www.arrowhead.eu

Secure Onboarding in Eclipse Arrowhead Framework

▪ The onboarding procedure is needed when a new device produced by any vendor (e.g. Siemens,

Infineon, Bosch, etc.) wants to interact with the Arrowhead local cloud

▪ To assure that the local cloud is not compromised upon the arrival of this new device, it is

important to establish a chain of trust from the new hardware device, containing a secure element

(e.g. TPM), to its hosted application systems and their services

▪ Thus, the onboarding procedure makes possible that devices, systems and services are authenticated and

authorized to connect to the Arrowhead local cloud



www.arrowhead.eu

▪ A system at the edge of the Arrowhead local cloud – the first entry point to Arrowhead

▪ It accepts all devices to connect via the Onboarding service, has a certificate for the https communication

with the device, and (optionally) the certificate is provided by a public CA (e.g. Verisign)

▪ On success the system provides

− the endpoints of the DeviceRegistry/SystemRegistry/ServiceRegistry/Orchestrator systems

− an Arrowhead issued “onboarding" certificate

Onboarding Controller System



www.arrowhead.eu

Onboarding Controller Use Cases



www.arrowhead.eu

Onboarding Functions

Function URL Path Method Input Output

certificate “/certificate/name” POST OnboardingWithName OnboardingWithNameResponse

certificate “/certificate/csr” POST OnboardingWithCsr OnboardingWithCsrResponse

sharedSecret “/sharedSecret/name” POST OnboardingWithName OnboardingWithNameResponse

sharedSecret “/sharedSecret/csr” POST OnboardingWithCsr OnboardingWithCsrResponse



www.arrowhead.eu

Onboarding with Certificate/SharedKey



www.arrowhead.eu

Onboarding Response



www.arrowhead.eu

▪ The DeviceRegistry system provides a storage of all active devices registered within an Arrowhead local

cloud, metadata of the devices, and the registered systems

▪ The DeviceRegistry system holds for the Arrowhead local cloud unique device identities

DeviceRegistry System

▪ This registry in combination with SystemRegistry and ServiceRegistry is necessary to create a chain of 

trust from a hardware device to a hosted software system and its associated services



www.arrowhead.eu

DeviceRegistry Use Cases

▪ The register function is used to register a device,

which contains a symbolic name as well as a

physical endpoint

▪ The unregister function is used to unregister a

device that no longer should be used

▪ The query function is used to find and translate a

symbolic device name into a physical endpoint, IP

address and a port. The query parameter is used

to request a subset of all the registered devices

in the DeviceRegistry system based on a specified

criteria

▪ The onboard function is an extension of the

register function and is used during the

onboarding of a device



www.arrowhead.eu

DeviceDiscovery Functions

Function URL Path Method Input Output

Register “/register” POST DeviceRegistryEntry DeviceRegistryEntry

Unregister “/unregister” DELETE Device Name, MAC address OK

Query “/query” POST DeviceQueryForm DeviceQueryList

Onboard “onboarding/name” POST Onboarding with Name
Onboarding with 

Name Response

Onboard “onboarding/csr” POST Onboarding with Csr
Onboarding with Crs

Response 



www.arrowhead.eu

DeviceRegistry Entry



www.arrowhead.eu

DeviceQuery Form/Response



www.arrowhead.eu

▪ The SystemRegistry is used to provide a local cloud storage holding the information on which systems are

registered with a local cloud, meta-data of these registered systems and the services these systems are

designed to consume

▪ The SystemRegistry holds for the Arrowhead local cloud unique system identities

SystemRegistry System

▪ This registry in combination with the DeviceRegistry and ServiceRegistry is necessary to create a 

chain of trust from a hardware device to a hosted software system and its associated services



www.arrowhead.eu

SystemRegistry Use Cases

▪ The register function is used to register a

system, which contains a symbolic name as well

as a physical endpoint

▪ The unregister function is used to unregister a

system that no longer should be used

▪ The query function is used to find and translate

a symbolic system name into a physical

endpoint, IP address and a port. The query

parameter is used to request a subset of all the

registered systems in the SystemRegistry system

based on a specified criteria

▪ The onboard function is an extension of the

register function and is used during the

onboarding of a system



www.arrowhead.eu

SystemDiscovery Functions

Function URL Path Method Input Output

Register “/register” POST SystemRegistryEntry SystemRegistryEntry

Unregister “/unregister” DELETE System Name, address, port OK

Query “/query” POST SystemQueryForm SystemQueryList

Onboard “onboarding/name” POST Onboarding with Name
Onboarding with Name 

Response

Onboard “onboarding/csr” POST Onboarding with Csr
Onboarding with Crs

Response 



www.arrowhead.eu

SystemRegistry Entry



www.arrowhead.eu

SystemQuery Form/Response 



www.arrowhead.eu

Certificate Hierarchy in Arrowhead



www.arrowhead.eu

▪ The Certificate Authority (CA) system is responsible for signing any descendant certificates in an Arrowhead

local cloud

▪ All parties must trust the CA registered with the common name of its hosting local cloud

▪ The certificate of the CA may be signed by a central authority (e.g. Arrowhead Consortium), so, the chain of

trust can be established allowing different local clouds to interconnect with each other in a secure manner

Certificate Authority System



www.arrowhead.eu

▪ The SignCertificate service issues signed certificates for requester entities inside a local cloud

▪ The requester entity has to construct a Certificate Signing Request (CSR) in compliance and send it to the CA

▪ The CA verifies the signature inside the CSR. If the signature verification is successful, then the CA generates

and sends back a signed certificate for the requester entity

▪ Using this certificate, the requester entity is able to communicate in secure manner with the systems inside

the local cloud

SignCertificate Functions

Function URL Path Method Input Output

SignCertificate “/getSignedCertificate” POST CertificateSigningRequest CertificateSigningResponse



www.arrowhead.eu

Secure Onboarding Procedure Use Cases

² Ani Bicaku, Silia Maksuti, Csaba Hegedűs, Markus Tauber, Jerker Delsing, and Jens Eliasson. "Interacting with the arrowhead local cloud: On-boarding procedure.“

2018 IEEE Industrial Cyber-Physical Systems (ICPS), pp. 743-748. IEEE, 2018.



www.arrowhead.eu

Secure Onboarding Procedure Sequence Diagram

² Ani Bicaku, Silia Maksuti, Csaba Hegedűs, Markus Tauber, Jerker Delsing, and Jens Eliasson. "Interacting with the arrowhead local cloud: On-boarding procedure.“

2018 IEEE Industrial Cyber-Physical Systems (ICPS), pp. 743-748. IEEE, 2018.



www.arrowhead.eu

Secure Onboarding Procedure: Smart Charging Demo



www.arrowhead.eu

▪ Inductive charger (charger to "refuel" the battery and simulate the charging of electric car)

▪ Voltcraft (measuring device -- used to control when the charger is supplied with power)

▪ RFID reader (identify the consumer)

▪ Raspberry Pi (run Arrowhead, control the voltcraft and RFID reader) + GrovePi

Demo Components - Producer



www.arrowhead.eu

▪ Fischertechnik TXT controller (control the engine and sensors of the car)

▪ Battery (power the raspberry pi and will be charged by the charging station)

▪ RFID chip card (identify the consumer to the producer)

▪ Raspberry Pi (run Arrowhead)

Demo Components - Consumer



www.arrowhead.eu

▪ Raspberry Pi (run Arrowhead core systems and the onboarding systems)

▪ Infoscreen (display information regarding Arrowhead and status of the demo)

▪ Wireless Router (creates network for communication)

Demo Components – Arrowhead Local Cloud



www.arrowhead.eu

Secure Onboarding Procedure: Smart Charging Demo

Video: https://www.youtube.com/watch?v=F-mG9s2ttT8&ab_channel=EclipseArrowhead

GitHub: https://github.com/arrowhead-f/core-java-spring

[1] Delsing, J. ed., 2017. IoT Automation: Arrowhead Framework. CRC Press.

[2] Bicaku, A., Maksuti, S., Hegedűs, C., Tauber, M., Delsing, J. and Eliasson, J., 2018, May. Interacting with the Arrowhead 

Local Cloud: On-boarding Procedure. In 2018 IEEE industrial cyber-physical systems (ICPS) (pp. 743-748). IEEE.

Arrowhead Wiki: https://www.arrowhead.eu/arrowheadframework/this-is-it

https://www.youtube.com/watch?v=F-mG9s2ttT8&ab_channel=EclipseArrowhead
https://github.com/arrowhead-f/core-java-spring
https://www.arrowhead.eu/arrowheadframework/this-is-it


www.arrowhead.eu

Thank You

Silia Maksuti 

silia.maksuti@forschung-burgenland.at

20/11/2020 


