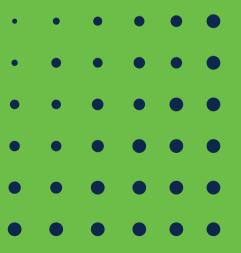


Fighting Fire with Fire – detecting DNS-tunneling with DNS.

Artsiom Holub


Senior Security Analyst

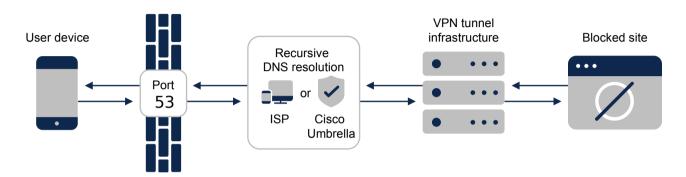
2022

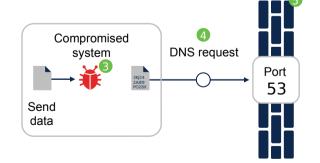
DNS tunneling adoption

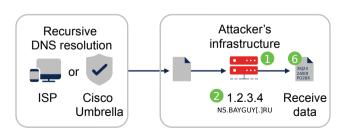
.my.tun.com

iliili SECURE

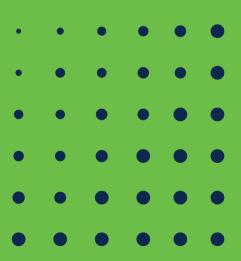
2022 Cisco and/or its affiliates. All rights reserved.



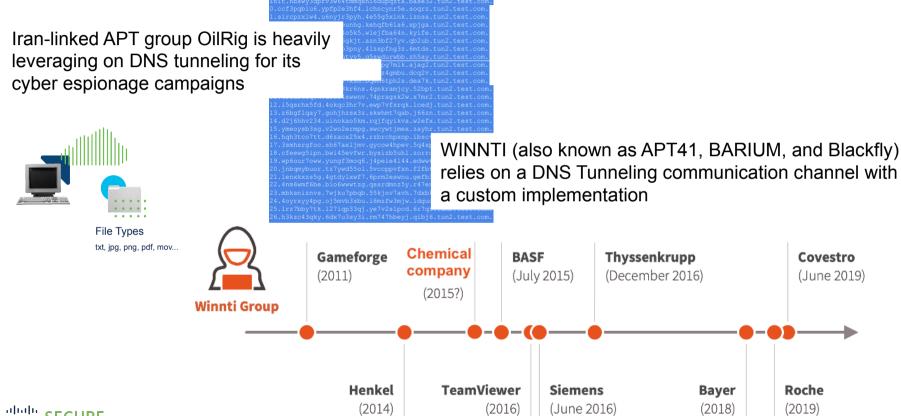



DNS tunneling

IT policy avoidance and guest Wi-Fi abuse



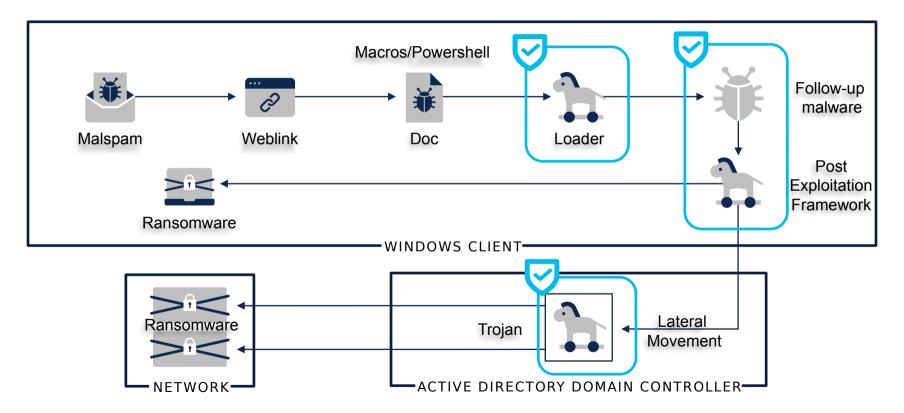
Data exfiltration and C2 callbacks



Threat Actors utilize DNS-Tunneling in malware attacks

Technique is adopted by various APT groups

SUNBURST


Supply Chain Attack most likely associated with APT

kbl0pqk3l38n7v7yrveuvu0ie2h.appsync-api.us-east-1.avsvmcloud.com. ajlcd4r3cc8j1r0orveuvu0ie2h.appsync-api.us-east-1.avsvmcloud.com. sj8312vqo4eaah86hirhe0ge2h.appsync-api.us-east-2.avsvmcloud.com. kbl0pqk3l38n7v7yrveuvu0ie2h.appsync-api.us-east-1.avsvmcloud.com. kbl0pqk3l38n7v7yrveuvu0ie2h.appsync-api.us-east-1.avsvmcloud.com. kbl0pqk3l38n7v7yrveuvu0ie2h.appsync-api.us-east-1.avsvmcloud.com. kbl0pqk3l38n7v7yrveuvu0ie2h.appsync-api.us-east-1.avsvmcloud.com. kbl0pqk3l38n7v7yrveuvu0ie2h.appsync-api.us-east-1.avsvmcloud.com. kbl0pqk3l38n7v7yrveuvu0ie2h.appsync-api.us-east-1.avsvmcloud.com. sj8312vqo4eaah86hirhe0ge2h.appsync-api.us-east-2.avsvmcloud.com.

- Trojanized DLL in digitally signed
 SolarWinds thought to occur around
 Spring 2020
- Post-compromised communication used previously unknown algorithm
 - Network traffic designed to mimic normal SolarWinds API communications
 - DNS exfiltration
- Follow up malware TEARDROP and COBALT STRIKE
 - Lateral movement, data theft


Multistage attacks often results in ransomware

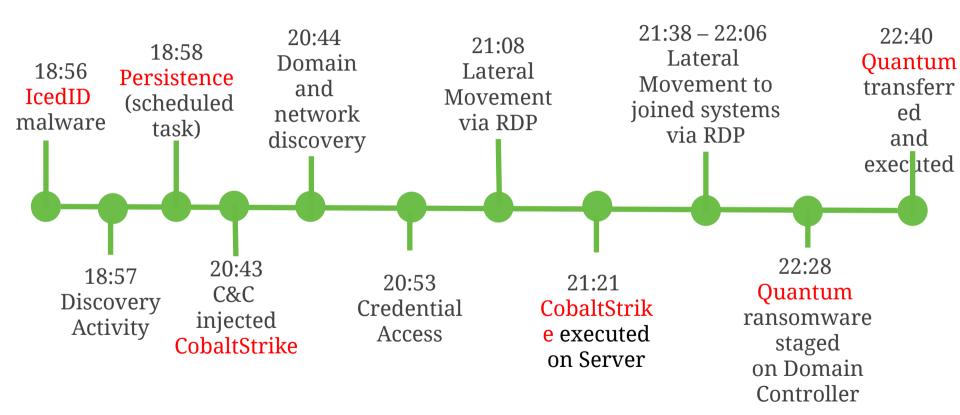
ChaChi RAT delivers PYSA ransomware

DNS traffic generated by ChaChi

ChaChi RAT C2 DNS Tunneling analysis

Modified Chashell

```
Answers

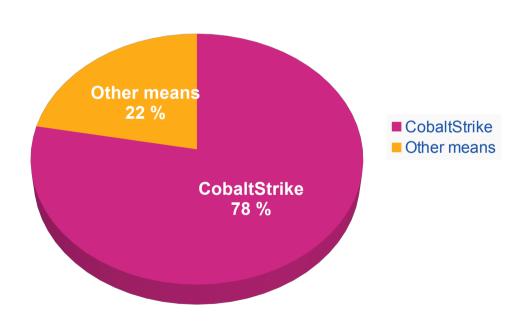

v 0ff5530eabfaf81c28007b1a7e031f3c0d0e0a092a0112f259ef00b7e4a3dbb.39ca87c582a941a116ddd778b26a1733d0bf3ec7cebef8c40.englishdialoge.xyz: type TXT, class IN Name: Off5530eabfaf81c28007b1a7e031f3c0d0e0a092a0112f259ef00b7e4a3dbb.39ca87c582a941a116ddd778b26a1733d0bf3ec7cebef8c40.englishdialoge.xyz Query Type: TXT (Text strings) (16)
Class: IN (0x0001)
Time to live: 3599 (59 minutes, 59 seconds)
Data length: 97
TXT Length: 96
TXT: O9ba8f3068beed9d130acece52faf48caad9af0c2aab2181c8bcfcf4d688a51c56152bab042b37ab53d0c4d1a180f4d6 Response
```

Chashell DNS tunnelling Query and Response

RETURNET NET

Quantum ransomware in 4 hours

Threat Actor)


CobaltStrike DNS beacon

C2 channel over DNS ask .com (root servers) ask evil.com 1234.profiles.evil.com Answer Infected machine ask <C2 response> Local profiles.evil.com **DNS** Server answer profiles.evil.com (malwarec2.evil.com controlled by

Ransomware utilizing CobaltStrike

Ransomware Attacks

- DNS Beacon is one of the most used Cobalt Strike features
- DNS Beacon is a DNSonly payload (no HTTP communication)
- A beacon can be configured with Malleable C2 configuration

Analyzing DNS Traffic

Wireshark view of Cobalt Strike DNS traffic

	^	_	_				
No.		Time	Source	Destination	Protocol	Stream index	Info
	15354	2021-11-10 16:09:29,784176	192.168.111	54.246.181.1	DNS		Standard query 0xc4ea A 19997cf2.wallet.thedarkestside.org OPT
	15358	2021-11-10 16:09:29,824396	54.246.181.1	192.168.111.5	DNS		Standard query response 0xc4ea A 19997cf2.wallet.thedarkestside.org A 8.8.4.246
	15463	2021-11-10 16:09:39,831448	192.168.111	54.246.181.1	DNS		Standard query 0x2bda A api.046cd40cb.19997cf2.wallet.thedarkestside.org
	15464	2021-11-10 16:09:39,867367	54.246.181.1	192.168.111.5	DNS		Standard query response 0x2bda A api.046cd40cb.19997cf2.wallet.thedarkestside.org A 8.8.4.52
	15582	2021-11-10 16:09:49,898012	192.168.111	54.246.181.1	DNS		Standard query 0xcbe7 TXT api.146cd40cb.19997cf2.wallet.thedarkestside.org OPT
	15584	2021-11-10 16:09:49,934897	54.246.181.1	192.168.111.5	DNS		Standard query response 0xcbe7 TXT api.146cd40cb.19997cf2.wallet.thedarkestside.org TXT
	15691	2021-11-10 16:09:59,938836	192.168.111	54.246.181.1	DNS		Standard query 0xb076 A post.130.01b902135.19997cf2.wallet.thedarkestside.org
	15692	2021-11-10 16:09:59,977018	54.246.181.1	192.168.111.5	DNS		Standard query response 0xb076 A post.130.01b902135.19997cf2.wallet.thedarkestside.org A 8.8.4.4
	15769	2021-11-10 16:10:09,990881	192.168.111	54.246.181.1	DNS		Standard query 0xc5d3 A post.2d195d35695d92484de7c5ec120e69b4d488d5c7c3de95c4a.ef3c54f0cfd699db3850445febf2528
	15770	2021-11-10 16:10:10,032850	54.246.181.1	192.168.111.5	DNS		Standard query response 0xc5d3 A post.2d195d35695d92484de7c5ec120e69b4d488d5c7c3de95c4a.ef3c54f0cfd699db385044
	15901	2021-11-10 16:10:23,066076	192.168.111	54.246.181.1	DNS		Standard query 0x604b A 19997cf2.wallet.thedarkestside.org
	15902	2021-11-10 16:10:23,102986	54.246.181.1	192.168.111.5	DNS		Standard query response 0x604b A 19997cf2.wallet.thedarkestside.org A 8.8.4.4
	16007	2021-11-10 16:10:36,124801	192.168.111	54.246.181.1	DNS		Standard query 0xcf44 A 19997cf2.wallet.thedarkestside.org OPT
	16011	2021-11-10 16:10:36,170850	54.246.181.1	192.168.111.5	DNS		Standard query response 0xcf44 A 19997cf2.wallet.thedarkestside.org A 8.8.4.246
	16124	2021-11-10 16:10:46,178810	192.168.111	54.246.181.1	DNS		Standard query 0x9211 A api.03dd750ef.19997cf2.wallet.thedarkestside.org
	16125	2021-11-10 16:10:46,219201	54.246.181.1	192.168.111.5	DNS		Standard query response 0x9211 A api.03dd750ef.19997cf2.wallet.thedarkestside.org A 8.8.4.84
	16214	2021-11-10 16:10:56,228989	192.168.111	54.246.181.1	DNS		Standard query 0xc78a TXT api.13dd750ef.19997cf2.wallet.thedarkestside.org OPT
	16215	2021_11_10 16+10+56 266308	5/1 2/16 181 1	102 168 111 5	DNIC		Standard quary reconned 0vc78a TVT ani 13dd750ef 10007cf? wallet thedarberteide ond TVT
<	_						

From https://blog.nviso.eu/2021/11/29/cobalt-strike-decrypting-dns-traffic-part-5/

CobaltStrike Beacons

Beacon configuration

```
Config found: xorkey ...
                              0x0001 0x0002
0x0001 payload type
                                                  1 windows-
beacon dns-reverse http
. . .
. . .
0x0008 server, get-uri
                                0x0003 0x0100
'malicious.domain.evil/search/'
. . .
. . .
. . .
0x0006 maxdns
                                0 \times 0001 \ 0 \times 0002
                                                    245
                                0 \times 0002 \ 0 \times 0004
                                                    123443044
0x0013 DNS Idle
8.8.4.4
0x0014 DNS Sleep
                                0 \times 0002 \ 0 \times 0004
                                                    10000
0x003c DNS beacon
                                0 \times 0003 \ 0 \times 0021
(NULL ...)
                                                     'cdn.'
0x003d DNS A
                                0 \times 0003 \ 0 \times 0021
0x003e DNS AAAA
                                                     'www6.'
                                0 \times 0003 \ 0 \times 0021
0x003f DNS TXT
                                0 \times 0003 \ 0 \times 0021
                                                     'api.'
0x0040 DNS metadata
                                                    'www.'
                                0x0003 0x0021
0x0041 DNS output
                                0 \times 0003 \ 0 \times 0021
                                                     'post.'
0x0042 DNS_resolver
                                0 \times 0003 \ 0 \times 0000 f
(NULL ...)
```

Malleable C2 configuration

```
dns-beacon {
    # Options moved into 'dns-beacon' group in 4.3:
    set dns idle
                              "1.2.3.4";
    set dns max txt
                              "199";
                              "1";
    set dns sleep
                              "5";
    set dns ttl
                              "200";
    set maxdns
    set dns stager prepend
                              "doc-stg-prepend";
    set dns stager subhost
                              "doc-stq-sh.";
    # DNS subhost override options added in 4.3:
                              "doc.bc.";
    set beacon
                              "doc.1a.";
    set get A
                              "doc.4a.";
    set get AAAA
                              "doc.tx.";
    set get TXT
                              "doc.md.";
    set put metadata
    set put output
                              "doc.po.";
                              "zero";
    set ns response
```


Analyzing DNS Traffic

Beacon sending results to the team server with DNS_output queries

```
Query A post.140.09842910.19997cf2.wallet.thedarkestside.org

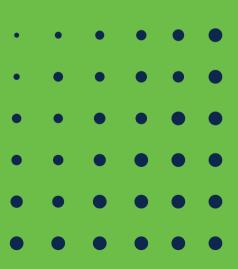
Response A 8.8.4.4

Query A post.2942880f933a45cf2d048b0cl4917493df0cd10a0de26ea103d0eb1b3.4adf28c63a97deb5cbe4e20b26902dlef427957323967835f7d18a42.19842910.19997cf2.wallet.thedarkestside.org OPT

Response A 8.8.4.4

Query A post.1debfa06ab4786477.29842910.19997cf2.wallet.thedarkestside.org

Response A 8.8.4.4
```

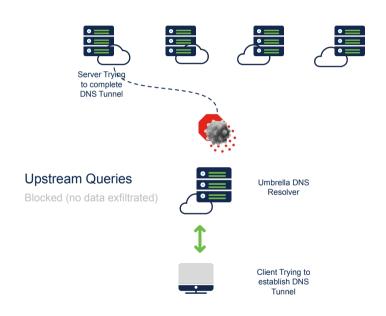

From https://blog.nviso.eu/2021/11/29/cobalt-strike-decrypting-dns-traffic-part-5/

This name breaks down into the following labels:

- post: DNS_output query
- 140: transmitted data
- 09842910: counter + random number
- 19997cf2: beacon ID
- wallet[.]thedarkestside.org: domain chosen by the operator

Using DNS to build Detection

Gathering intelligence at the DNS layer


Recursive DNS Any device Authoritative DNS root domain.com. Authoritative DNS logs User request patterns Used to detect: Used to find: Compromised systems Newly staged infrastructures Command and control callbacks Malicious domains, IPs, ASNs Malware and phishing attempts DNS hijacking Fast flux domains Algorithm-generated domains

Domain co-occurrencesNewly registered domains

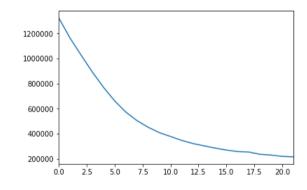
Acquiring datasets

Various tools, encoding techniques and queries

Tools

DNS2TCP
DNSCAT2
DNSExfiltrator...

Encoding techniques and query characteristics

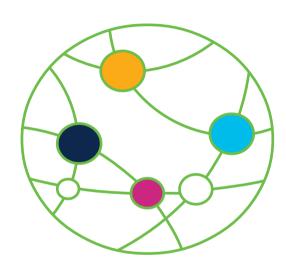

Base64, Base32 ... Qtypes - TXT, SRV, MX, CNAME

Statistics, Communication, and Features

- Interested in lexical features of subdomains
 - Subdomains contain the 'payload' of the message
- Features
 - Number of subdomains
 - Existence of particular trigrams
 - Compressibility of feature sets
- Lloyd's algorithm to identify groups
 - Measure distortion

Behavioral profiles based on DNS queries

- Build statistical profile to identify groups of devices within the network that have a prescribed role
- The statistical profile is built from looking at graph data
- Build a large bi-partite graph between clients and FQDNs
- Decompose the graph into connected components
 - Each connected component represents as set of domains queried by a subset of clients
 - Smaller connected components usually indicate that a set of domains may be unique to only one or two clients


Statistics:

- Jaccard Index over the hours a client is active
- The size of the connected component a client is part
- The largest connected component a client is in
- Number of unique PLDs in the connected component

Clustering

- At high level we can see these types of clusters:
 - Specialized Network Device Communication:
 - Behavior: Bursts of communication for ~1 hour only with easily identified PLDs
 - Service based devices with Continuous Communication:
 - Messaging > 15 on avg, High Jaccard.
 Examples: WebIT services, billing, login services
 - Network and Server like Devices
 - Behavior = 1 hour on + many messages to many clients
 - User devices
 - Huge cluster of clients with one to many relations

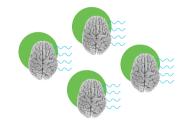
Building Detections

- Reactive
 - O Identifies tunneling domains based on statistics derived through querylog data
- Realtime Heuristics
 - Rule based method to detect known tunneling using signatures and rules
- Realtime Behavioral Detection
 - O Behavioral based detection that mimics the detection capability of the reactive system
 - O System based on client query activity

nbswy3dpfv3w64tmmqxhi6dupqztan Example of Stateful Algorithm

Realtime Tunneling Detection

Technique to identify encrypted Base32 and Base64 messages in real-time. Relies on transition probabilities from one character to the next, identifying character combinations likely related to encrypted messages.



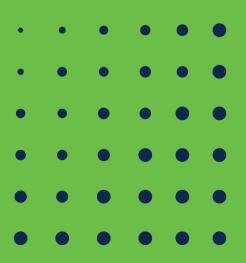
DNS Resolver (Real-time Caching Detection)

Implementation of the detections directly in the resolver

Name Server Cache

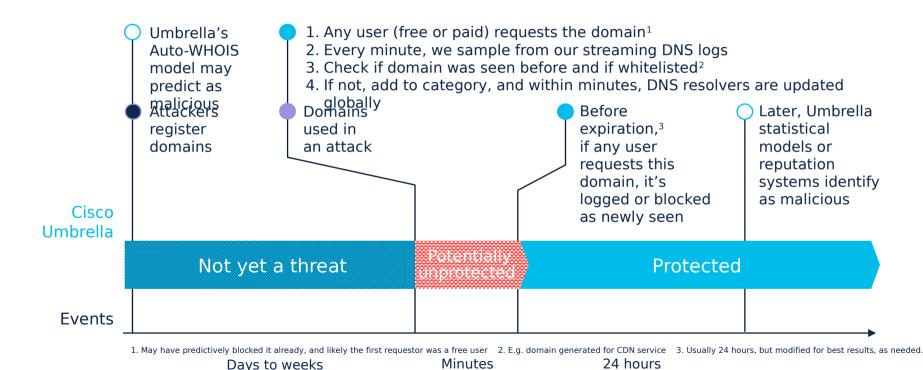
- Caches frequently requested DNS records.
- Name server info frequently cached.

Tunneling Cache Signatures


- Developing proprietary caching strategy.
- Maintain signatures related to tunneling.

Global Resolver Fleet

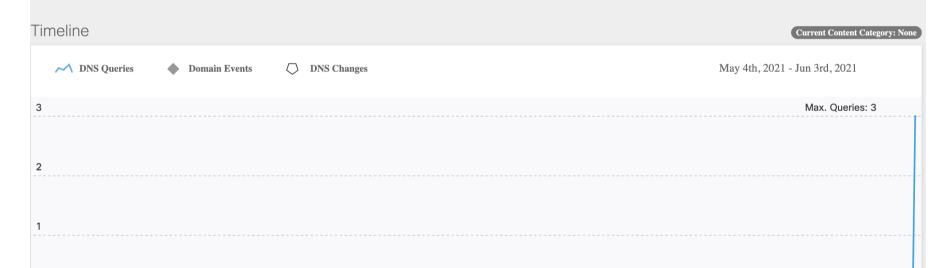
 DNS resolvers independently detect DNS tunneling



Protection from unknown with Quarantine approach

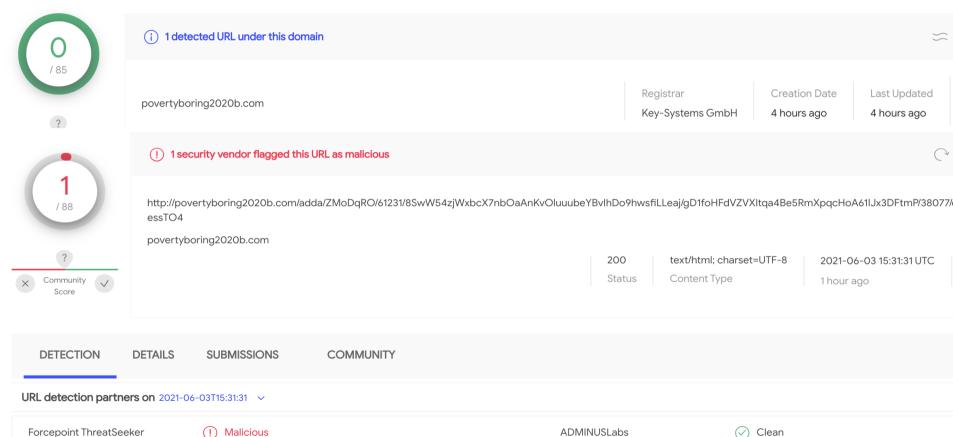
'Newly seen domains' category Reduces risk of the unknown

povertyboring2020b.com


The domain is classified as Medium Risk due to a combination of suspect security features.

Security Categories

Content Categories


Newly Seen Domains

SECURITY INDICATORS ▼

AICC (MONITORAPP)

Clean

AegisLab WebGuard

Clean

(!) 6 security vendors flagged this domain as malicious

povertyboring2020b.com

Creation Date 11 days ago

Last Updated 11 days ago

DETECTION	DETAILS	RELATIONS	COMMUNITY		
CRDF		(!) Malicious		CyRadar	(Malicious
ESET		! Malware		Forcepoint ThreatSeeker	① Malicious
Fortinet		! Malware		Sophos	① Malware
•					

Target order 06.21.doc Filesize

43KB Completed

▼ ● General

03-06-2021 14:43

531791608

banker

trojan

Score

SHA1 **SHA256**

MD5

7c71a7ae38ef95d36434f0b680b30393de9b95ec 95af2e46631be234a51785845079265629462e809e667081eb0b723116e265f3

b1254d3fa38e2418734d4a2851fc22a6

▼ ③ Network **REQUESTS**

DNS

GET

icedid

Processes

TCP

povertyboring2020b.com

UDP

http://povertyboring2020b.com/adda/ZMoDqRO/61231/8SwW54zjWxbcX7nbOaAnKvOluuubeYBvIhDo9hwsfiLLeaj/gD1foHFdVZVXItqa4Be5RmXpq...

mshta.exe

mshta.exe

۵

Category
can be
incorporated
in the analysis
as indicator
of potentially
malicious activity

BEHAVIORAL INDICATORS Severity **3** Indicator Artifact Flagged Malicious by Antivirus Service 100 A Document File with Embedded and Minimal Content 100 **Established Network Communications** Document Submission Contacted Domain Flagged By Cisco 100 Umbrella **Executable Artifact has Misleading File Extension** 60 Downloaded PE Executable 60 Cisco Umbrella Categorized Domain As A Newly Seen 60 Domain

Twitter:

@Mesiagh

Email:

@artholub@cisco.com

Special Thanks: Thomas Mathew

Talosintelligence.com