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PRIVATE-KEY CRYPTOGRAPHY

• Private-key cryptography allows two users who share a secret 
key to establish a “secure channel” 

• The need to share a secret key incurs several drawbacks…



THE KEY-DISTRIBUTION PROBLEM

• How do users share a key in the first place?

• Need to share the key using a secure channel…

• This problem can be solved in some settings…

• E.g., physical proximity, trusted courier

• (Note: this does not make private-key cryptography useless)

• …but not others (or at least not cheaply)



THE KEY-MANAGEMENT PROBLEM

• Imagine an organization with N employees, where each pair 
of employees might need to communicate securely

• Solution using private-key cryptography:

• Each user shares a key with all other users

Þ Each user must store/manage N-1 secret keys!

Þ O(N2) keys overall!



LACK OF SUPPORT FOR “OPEN SYSTEMS”

• Say two users who have no prior relationship want to 
communicate securely

• When would they ever have shared a key?

• This is not at all far-fetched!

• Customer sending credit-card data to merchant

• Sending an email to a colleague



“CLASSICAL” CRYPTOGRAPHY 
OFFERS NO SOLUTION 
TO THESE PROBLEMS!





NEW DIRECTIONS…

• Key ideas:

• Some problems exhibit asymmetry – easy to compute, but hard to 
invert (think factoring)

• Use this asymmetry to enable two parties to agree on a shared secret 
key using public discussion(!)

• Key exchange



KEY EXCHANGE

…
…

k kEnck(m)



MORE FORMALLY…

· · ·

k{0,1}n k{0,1}n

transcript

Security goal: even after observing the transcript, the shared 
key k should be indistinguishable from a uniform key 



KEY EXCHANGE

· · ·

k{0,1}n k{0,1}n

Security goal: even after observing the transcript, the shared 
key k should be indistinguishable from a uniform key 
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DIFFIE-HELLMAN KEY EXCHANGE

• Group-generation algorithm G outputs cyclic group G of prime order 
q with generator g

• |q| = n bits

• Decisional Diffie-Hellman (DDH) problem:

• Given gx, gy, distinguish gxy from a uniform group element

• Hardness of DDH implies hardness of the discrete-logarithm problem

• (This alone is not enough for key exchange)



DIFFIE-HELLMAN KEY EXCHANGE

k1 = (h2)x = gyx k2 = (h1)y = gxy

(G, q, g)  G(1n)
x  ℤq
h1 = gx

G, q, g, h1

y  ℤq
h2 = gy

h2



PUBLIC-KEY ENCRYPTION

pk, skpk

c  Encpk(m) m = Decsk(c)

c

pk
pk



EL GAMAL ENCRYPTION

k = (h2)x

m = c2/k

k = (h1)y

(G, q, g)  G(1n)
x  ℤq
h1 = gx

G, q, g, h1

y  ℤq
h2 = gy

h2

c2 =  k · m

Public key

h2, h1
y · m 
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EL GAMAL ENCRYPTION

• Gen(1n)

• Run G(1n) to obtain G, q, g. Choose uniform xℤq. The public key is (G, q, g, gx) and the private 

key is x

• Encpk(m), where pk = (G, q, g, h) and mG

• Choose uniform y ℤq. The ciphertext is gy, hy·m

• Decsk(c1, c2)

• Output c2/c1
x



QUANTUM COMPUTERS

• GOOGLE Corporation, in conjunction with with the company  D-Wave 
signed contract about creating quantum computers. D-Wave 2X - is 
the newest quantum processor, which contains physical qubits. 

• Each additional qubit doubles the data search area, thus is also 
significantly increased the calculation speed. Quantum computers 
will destroy systems based on the problem of factoring integers (e.g., 
RSA). RSA cryptosystem is used in different products on different 
platforms and in different areas. RSA system is widely used in operating systems from Microsoft, Apple, Sun, and Novell. In 

hardware performance RSA algorithm is used in secure phones, Ethernet, network cards, smart 
cards, and is also widely used in the cryptographic hardware. Along with this, the algorithm is a 
part of the underlying protocols protected Internet communications, including S / MIME, SSL 
and S / WAN, and is also used in many organizations, for example, government, banks, most 
corporations, public laboratories and universities.



NEWS FROM GOOGLE

• Google made a huge revelation on October 23, 2019, when it announced that 

it had reached something called “quantum supremacy.” Via an article in the 

journal Nature, Google said their quantum computer, called Sycamore, solved 

a particularly difficult problem in 200 seconds. For comparison, Google said 

the world’s current fastest classical computer — one called Summit owned by 

IBM that’s as big as two basketball courts — would take 10,000 years to solve 

that same problem. This is what “quantum supremacy” means. It’s when a 

quantum computer — one that runs on the laws of quantum physics as 

opposed to the classical computers we’re familiar with (i.e. phones and 

laptops), which run on classical physics like Newton’s laws of motion — does 

something that no conventional computer could do in a reasonable amount of 

time.



IBM’S ANSWER

• IBM responded to Google’s news to say that actually, Summit could 

solve the quantum computers’ problem in two and a half days — not 

10,000 years as Google had suggested. In this episode of Recode’s 

Reset podcast, host Arielle Duhaime-Ross and Kevin Hartnett, a senior 

writer for the math and physics magazine Quanta, break down exactly 

what quantum computing is and why Google dunking on IBM both was 

and wasn’t a huge deal.



CHINESE RESEARCHERS ACHIEVE QUANTUM 
ADVANTAGE IN TWO MAINSTREAM ROUTES

• Chinese research teams have made marked progress in superconducting quantum 
computing and photonics quantum computing technology, making China the only country 
to achieve quantum computational advantage in two mainstream technical routes, while 
the US has only achieved a "quantum advantage" in superconducting quantum 
computing, analysts say.

• "Zuchongzhi 2.1," is 10 million times faster than the current fastest supercomputer and its 
calculation complexity is more than 1 million times higher than Google's Sycamore 
processor. It's the first time that China has reached quantum advantage in a 
superconducting quantum computing system.



• Pan's team also built a new light-based quantum computer prototype, "Jiuzhang 2.0," with 113 
detected photons, which can implement large-scale Gaussian boson sampling (GBS) 1 septillion 
times faster than the world's fastest existing supercomputer, according to the Xinhua News 
Agency. 

Yuan said that the number of detected photons for "Jiuzhang 2.0" increased to 113 from the 
previous 76 when the quantum computer prototype "Jiuzhang" first came out, which was a 
major technical breakthrough, as the difficulty increases exponentially with each additional 
detected photon. 

The light-based quantum computer prototype "Jiuzhang" was built in December 2020, led by 
Pan and Lu, and demonstrated a quantum advantage. 



RSA ALTERNATIVES

Hash-based Digital Signature Schemes: One of RSA alternatives are Hash-based 
Digital Signature Schemes. The safety of these systems depends on the security of 
cryptographic hash functions.

A code-based public-key encryption system: McEliece example. In this system the 

public key is (Gnew, t), and the private key is (S, G, P), where G is k x n generator matrix 

for the code C. C is random binary (n, k)-linear code, that is capable to improve t errors. 
N is the number of code words, k is dimension of C. S is a random k x k binary 

nonsingular matrix.  P is a random n x n binary permutation matrix. Gnew  = S * G * P; k x n 

matrix. To encrypt the message we must encrypt message m as a binary string with the 

length k; cyp = m x Gnew;  is generated random n-bit error vector v with the weight t. The 

cypher is calculated as c= cyp+v. For decoding is calculated cyp = c*P-1; Using 

decryption algorithm of C is calculated mnew= m*S => m= mnew*S-1



RSA ALTERNATIVES

• Lattice-based Cryptography: proofs are based on worst-case hardness.

• Multivariate public key cryptosystem – MPKCs: have a set of(usually) 
quadratic polynomials over a finite field. Security assumption is backed by the 
NP-hardness of the problem to solve nonlinear equations over a finite field.



SUCCESSFUL 
ATTACKS 

• To date are already found successful attacks on this crypto system.

• The Ph.D. candidate of Dublin City University (DCU) Neill Costigan with 
the support of Irish Research Council for Science, Engineering and 
Technology (IRCSET), together with professor Michael Scott, Science 
Foundation Ireland (SFI) member successfully were able to carry out an 
attack on the algorithm. To do this they needed 8,000 hours of CPU 
time. In the attack representatives of four other countries took part. 
Scientists have discovered that the initial length of the key in this 
algorithm is insufficient and should be increased.

• This system cannot be also used to encrypt the same message twice 
and to encrypt the message when is known it’s relation with the other 
message.



• Should be noted the importance of efficiency spectrum. To date experts have 
reached quite good results in the speed algorithm processing. According to the 
investigation results it becomes clear that the proposed post-quantum 
cryptosystems are relatively little effective. Implementation of the algorithms 
requires much more time for their processing and verification.

• Inefficient cryptography may be acceptable for the general user, but it cannot be 
acceptable for the internet servers that handle thousands of customers in the 
second. Today, Google has already has problems with the current cryptography. It 
is easy to imagine what will happen when implementing crypto algorithms will 
take more time.

• The development and improvement of modern cryptosystems will take years. 
Moreover, all the time are recorded successful attacks on them. When is 
determined the encryption function, and it becomes standard, it needs the 
appropriate implementation of the corresponding software, and in most cases, 
hardware.



• During the implementation it is necessary to ensure not only correct work of the function and 
the speed of its efficiency, but also to prevent any kind of leaks. Recently have been recorded 
successful «cache-timing» attacks on RSA and AES system, as a result of that Intel has added 
the AES instructions to its processors.

• McEliece system is vulnerable to attacks, related to side channel attacks. Was shown the 
successful timing attack on Patterson algorithm. This attack does not detect the key, but 
detects an error vector that can successfully decrypt the message cipher. 

• As we can see, for the creation and implementation of safe and effective post-quantum 
cryptosystems it is necessary to fulfill the rather big work. From the foregoing it is clear that 
today we are not ready to transfer cryptosystems into post-quantum era. In the near future we 
cannot be sure in the reliability of the systems.



RSA ALTERNATIVES – HASH 
BASED

• Traditional digital signature systems that are used in practice are vulnerable to quantum 

computers attacks. The security of these systems is based on the problem of factoring large 

numbers and calculating discrete logarithms. Scientists are working on the development of 

alternatives to RSA, which are protected from attacks by quantum computer. One of the 

alternatives are hash based digital signature schemes. These systems use a cryptographic 

hash function. The security of these digital signature systems is based on the collision 

resistance of the hash functions that they use.



LAMPORT–DIFFIE ONE-TIME SIGNATURE 
SCHEME (KEY GENERATION)

• Keys generation in this system occurs as follows: the signature key X 
of this system consists of 2n lines of length n, and is selected 
randomly.

• X= (xn-1[0], xn-1[1], …, x0[0], x0[1])  {0,1} ∈ n,2n

• Verification key Y of this system consists of 2n lines of length n. 

• Y= (yn-1[0], yn-1[1], …, y0[0], y0[1])  {0,1} ∈ n,2n

• This key is calculated as follows:

• yi[j] = f(xi[j]), 0<=i<=n-1, j=0,1

• f – is one-way function:

• f: {0,1} n {0,1} n;



DOCUMENT SIGNATURE

• To sign a message m of arbitrary size, we transform it into size n using the 
hash function: 

• h(m)=hash = (hashn-1, … , hash0)

• Function h- is a cryptographic hash function:
• h: {0,1} *{0,1} n

• The signature is done as follows:

• sig= (xn-1[hash n-1],  …, x0[hash0])  {0,1} ∈ n,n

• i-th string in this signature is equals to xi[0], if i-th bit in hashed message is 

equal to 0. The string is equal to xi[1], if i-th bit in sign is equal to 1.

• Signature length is n2.



DOCUMENT VERIFICATION

To verify the signature sig = (sign-1, …, sig0), is calculated hash of the 

message hash = (hashn-1, … , hash0) and the following equality is checked: 

(f(sign-1), …, f(sig0)) = (yn-1[hashn-1], …, y0[hash0]) 

If the equation is true, then the signature is correct.



WINTERNITZ ONE TIME SIGNATURE 
SCHEME.
KEY GENERATION

To achieve security O(280), the total size of public and private keys must 
be 160∗2∗160 bits = 51200 bits, that is 51200/1024=50 times larger 
than in the case of RSA. We must also note that the size of the signature 
in the given scheme is much larger than in the case of RSA. Winternitz 
One-time Signature Scheme was proposed to reduce the size of the 
signature.



MERKLE 

• One-time signature schemes are very inconvenient to use, because to sign each message, 
you need to use a different key pair. Merkle crypto-system was proposed to solve this 
problem. This system uses a binary tree to replace a large number of verification keys with 
one public key, the root of a binary tree. This cryptosystem uses an one-time Lamport or 
Winternitz signature scheme and a cryptographic hash function:

• h:{0,1}*{0,1}n

• Key generation: The length of the tree is chosen H>=2,  with one public key it is possible 

to sign 2H documents. 2H signature and verification key pairs are generated; Xi, Yi, 

0<=i<=2H. Xi- is signature key, Yi- is verification key.  h(Yi) are calculated and are used as 

the leaves of the tree. Each tree node is a hash value of concatenation of its children. 



MERKLE TREE



SIGNATURE GENERATION

• To sign a message m of arbitrary size we transform  it into size n using 
the hash function 

• h (m) = hash, and generate an one-time signature using any one-time 

key Xany, the document's signature will be the concatenation of: one 

time signature,  one-time verification key Yany, index any and all 

fraternal nodes authi in relation to Yany.

• Signature= (sig||pub||any|| Yany||auth0,…,authH-1)

• Signature verification: 

• To verify the signature we check the one-time signature of sig using 

Yany, if it is true, we calculate all the nodes a [i, j] using “authi”, index 

“any” and Yany. We compare the last node, the root of the tree with 

public key, if they are equal, then the signature is correct.



MERKLE TREE

• Merkle Trees are computationally fast, and a Merkle Tree over 
n nodes can be constructed in O(n) time.

• Merkle Tree that contains many nodes can have Merkle proofs 
that are then prohibitively large.

• To sign 2^n messages the height of the tree must be n.

• The Merkle Proof itself could create a large and expensive 
bandwidth overhead on Dropbox



K-ARY MERKLE TREES

• One possible solution is to use a k-ary Merkle Tree. In a binary 
Merkle Tree, the proof consists of one node at each level, so to 
reduce the size of the proof, we can reduce the height of the tree by 
giving it a branching factor of k > 2.

• This approach reduces the height of the tree, but enlarges the proof 
size. If a branching factor is k, it reduces the height of the tree from 
log2n to logkn. log2k is decrease in height. 

• Merkle proof actually grows larger, from O(log2n) to O(k logk n). 



K-ARY MERTKLE TREE



OUR GOAL

• Our goal is reduce:

• 1. the height

• 2. the proof size



VECTOR COMMITMENT TREE

• In Merkle Tree, we replace the Hash functions with the corresponding Vector Commitments. 

• To compute a Verkle Tree for the messages, m0,m1,…,mn:

1. The branching factor of the tree is selected, k. 

2. We group our messages into subsets of k and calculate a Vector Commitment, VC, over 
each of the subsets. 

3. We compute each membership proofs pi for every message mi in the subset with respect 

to VC.

4. After we continue computing Vector Commitments up the tree over previously computed 
commitments until we compute the root commitment of Verkle tree. 



VERKLE TREE



COMPLEXITY

Scheme Construction Proof size

Merkle Tree O(n) O(log2n)

k-ary Merkle Tree O(n) O(k logkn)

Verkle Tree O(n2) O(1)

k-ary Verkle Tree O(kn) O(logkn)



VECTOR COMMITMENTS

• Vector commitment allows to commit to an ordered sequence 
of values in such a way that it is later possible to open the 
commitment only w.r.t. a specific position. We define Vector 
Commitments as a non-interactive primitive. 



ALGORITHMS

• Vector commitments can be described via the following algorithms:

• VC.KeyGen (1^k ,q ) Given the security parameter k and the size q of the committed vector (with 
q = poly ( k )), the key generation outputs some public parameters pp (which implicitly define 
the message space M ). 

• VC . Compp ( m1 ,...,mq ) On input a sequence of q messages m1 ,...,mq  M and the public ∈
parameters pp , the committing algorithm outputs a commitment string C and an auxiliary 
information aux . 

• VC.Openpp ( m,i,aux ) This algorithm is run by the committer to produce a proof Λi that m is the i -
th committed message. 

• VC.Verpp ( C,m,i,Λi ) The verification algorithm accepts (i.e., it outputs 1) onlyif Λi is a valid proof 
that C was created to a sequence m1 ,...,mq such that m = mi .



VECTOR COMMITMENTS

• 1. Vector Commitment Based on CDH

• 2. Vector Commitment Based on RSA



VECTOR COMMITMENT BASED ON CDH

• Here we propose an implementation of concise vector 
commitments based on the CDH assumption in bilinear 
groups. Precisely, the security of the scheme reduces to the 
Square Computational Di e-Hellman assumption. Roughly ffi
speaking, the Square-CDH assumption says that it is 
computationally infeasible to compute the value g^(a^2), 
given g,g^a  G.∈



VECTOR COMMITMENT BASED ON CDH 
ALGORITHMS

• VC.KeyGen (1^k ,q ) Let G , GT be two bilinear groups of prime order p equipped with a bilinear map e : G × G  G→ T . Let g  G be ∈
a random generator.Randomly choose z1 ,...,zq from Z p . 

• For all i = 1 ,...,q set: hi = g^(zi) . For all i,j = 1 ,...,q , i≠j set hi,j = g^(zizj) Set pp = ( g, {hi}i [q] ∈ , { hi,j} i,j [ q ] ,i≠j ∈ ). The message 
space is M = Zp 

• VC.Compp ( m1 ,...,mq ) Compute C = h1^(m1)h2^(m2) ··· hq ^(mq) and output C and the auxiliary information aux = ( m1 ,...,mq ). 

• VC.Openpp ( mi ,i, aux ) Compute

• VC.Verpp ( C,mi ,i,Λi ) If e(C/hi^(mi),hi)=e(Λi ,g ) then output 1. Otherwise output 0.



POLYNOMIAL COMMITMENTS

• In practice, we use more powerful primitive than a vector commitment - 
a polynomial commitment. Polynomial commitments let you hash a polynomial, 
and make a proof for the evaluation of the hashed polynomial at any point. You can 
use polynomial commitments as vector commitments: if we agree on a set of 
standardized coordinates (c1,c2...cn), given a list (y1,y2...yn) you can commit to the 
polynomial P where 

• P(ci)=yi for all i [1..n] you can find this polynomial with Lagrange interpolation.∈

• In numerical analysis, the Lagrange interpolating polynomial is the 
unique polynomial of lowest degree that interpolates a given set of data.



POLYNOMIAL COMMITMENTS

• The two polynomial commitment schemes that are the easiest to use are KZG 
commitments and bulletproof-style commitments (in both cases, a 
commitment is a single 32-48 byte elliptic curve point). Polynomial 
commitments give us more flexibility that lets us improve efficiency, and it just 
so happens that the simplest and most efficient vector commitments 
available are the polynomial commitments.

• This scheme is already very powerful as it is: if you use a KZG commitment 
and proof, the proof size is 96 bytes per intermediate node, nearly 3x 
more space-efficient than a simple Merkle proof if we set width = 256. 



MERGING THE PROOFS

• Instead of requiring one proof for each commitment along the 
path, by using the extra properties of polynomial 
commitments we can make a single fixed-size proof that 
proves all parent-child links between commitments along the 
paths for an unlimited number of keys. 



PROBLEMS

• Vector commitments based on CDH and RSA can be broken 
by quantum computers

•  Polynomial commitments based on elliptic curves can be 
broken by quantum computers 



VECTOR COMMITMENTS FROM LATTICES

• Chris Peikert, Zachary Pepin and Chad Sharp offer statelessly 
updatable VCs.

• The scheme is post-quantum



NOVEL SCHEME

• Key generation: The tree length is selected as H>=2. Here one public key can sign 2H documents. 2H key pairs Xi, 
and Yi are generated, where Xi is the signature key and Yi the verification key, h (Yi) are computed and used as the 
leaves of the tree. Each node in the tree is a hash value of of its children’s concatenation.

• a[1,0]=h(a[0,0] || a[0,1])

• The public key of the Verkle crypto scheme is the root commitment, to generate it 2H pairs of one time keys must be 
computed. 

• Signature generation: Message m of arbitrary size, is transformed into size n by means of the hash function. h (m) 

= hash, and is generated a one-time signature using arbitrary one-time key Xarb, the document's signature will be the 

concatenation of: one-time signature, one-time verification key Yarb, index arb the proof and the root commitment. 

Signature= (sig||arb|| Yarb||proofs ||commitments || root commitment)

• Signature verification: In Verkle digital signature verifying signature is done as following, the one-time signature of 

sig should be verified using Yarb, if it is true, the commitments VC [i] are verified. If the root of the tree is equal to root 

commitment, the signature is verified.
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