
Nostalgic memory-
Remembering all the wins and loses of
memory corruptions

Shubham Dubey

$whoami
• Security Researcher @ Microsoft

• Expertise in low level security

• Follow @nixhacker

Agenda

• Basics of memory corruption

• Generation 1 mitigations

• Generation 2 mitigations

• Tools – Memory error detection

• Future of Memory corruptions

• Memory corruption matrix

• Conclusion

Categorizing Mitigations:

Gen 1 – (before 2010)
• Mostly discovered/added in early

years when memory corruptions
where at peak.

• Currently Stable state.

1

Gen 2 (after 2010)
• Covers the missing gaps of

Generation 1 mitigations.
• Still been improved

2

Category 2

TOOLS TECHNIQUES

Quick intro
to memory
corruption

Intro to Memory corruption

Intro to Memory corruption

Other types of memory corruption

• Heap overflow
• Double free
• Indirect function calls modification
• OOB read/write
• NULL pointer dereference

When it all started

1988

fingerd unix application which was exploited by
Morris worm.

1996

phrack edition 49 “Smashing the stack for fun
and profit” in 1996

Gen 1 timeline

1992

BoundCheck

1997

StackGuard

2000

Stack Shield

2001

StackGhost

2004

Propolice

2004

NX stack

2005

ASLR

BoundCheckers [Tool][1992]

• Memory leaks detection suite released by NuMega Corp.
• Capable of detecting array and buffer overrun conditions.
• Currently part of DevPartner studio in Visual studio.

BoundCheckers – Capability and Working

• memory corruption problems caused by the following
• Overrun allocated buffers
• Continued access to memory after it has been deallocated
• Deallocating a resource multiple times (e.g. double free)

• works by doing instrumentation to perform memory tracking and
and API validation.

Limitation

• closed source nature caused less implementation and usage.
• Performance impact due to heavy instrumentation.
• Poor maintenance.

Stack Guard [1997][Technique]

• First major buffer overflow protection added to gcc 2.7 in year
1998 in Immunix distribution.

• it adds a random 8bytes data (called stack canaries) at the
starting of function stack frame

• During the function return, it match if the canary is same or not.
• During exit if the canary is found to be modified, the program gets

abort.

Stack Guard

Stack Guard – Linux implementation

Function prologue Function epilogue

Stack Guard – Linux implementation

• What all are protected (based on gcc flag):
• -fstack-protector
• -fstack-protector-strong
• -fstack-protector-all

• Canaries on linux kernel
• CONFIG_CC_STACKPROTECTOR
• CONFIG_CC_STACKPROTECTOR_STRONG
• -CONFIG_CC_STACKPROTECTOR_ALL

Stack Guard – Windows implementation

• introduced in Windows in year 2003 with visual studio support for
/gs flag.

• The call j__security_check_cookie will verify if rcx is set to 0 or not.
If not than it will abort the program otherwise return.

Function Epilogue

Function Prologue

Stack Guard – Windows kernel

Function Prologue

Function Epilogue

Limitation of stack guard

• Detect overflow but not prevent it (Can be major issue in Kernel
architecture).

• Guessed by brute force in certain implementation.
• Not prevent modification of local variable.

Stack Shield [2000][Tool]

• Consist of shieldgcc and shieldg++ to compile c/c++ binary with
stackshield protection.

• Two main feature
• the Global Ret Stack (default)
• the Ret Range Check.

• GRS save the return address in a separate memory space named
retarray.

• RRC detect and stop attempts to return into addresses higher
than that of the variable shielddatabase

Stack Shield - Implementation

StackGhost [2001][Technique]

• Hadware enforced stack overflow protection for sparc
architecture.

• uses register windows in SPARC architecture to make stack
overflow exploitation harder.

StackGhost Implementation – Protect return address

Encoded return address:
Return address goes through
reversable transform and
then saved in stack. During
access, transform is
recalculated before access
is complete.

01
XOR cookie - XORing the
cookie with return address
before it is saved and xoring
again after it popped off
preserve the legitimate
pointer but distort the
attack.

02
Encrypted Stack Frame –
Corrupted return can be
detected by encrypting part
of the stack frame when the
window is written to the
stack and decrypting it
during retrieval.

03
Return address stack:
Having a return address
stack as FIFO which is based
on register windows
concept.

04

StackGhost Limitation

• Randomness of XOR cookie is low that can be easily predicted.
• Techniques based on detection but not protection.

ProPolice [2004][Technique]

• Patches added by IBM in gcc to improve stack guard protection.
• It detects modification of local variable that stack guard doesn’t

support.

ProPolice
Implementation

• Patch include the reordering of local variables to
place buffers after pointers to avoid the corruption of
pointers.

• For protecting function pointer, . It makes a new local
variable, copying the argument `func1‘’ to it, and
changing the reference to `func1‘’ to use the new
local variable.

Libsafe and Libverify [2000][Tool]

• Used by loading precompiled dynamic library with any process.
• The libsafe intercepts all calls to library functions that are known

to be vulnerable from the loaded library.
• The libverify library relies on verification of function’s return

address before it is used.
• It inject the verification code at the start of process execution via

rewriting the binary after it is written on the memory.

Libsafe and Libverify

Non executable stack [2004] [Technique]

• Software mitigation added in 1998. Hardware support introduced
in 2001 by Intel/AMD.

• Merged in gcc in 2004.
• Called NX stack (Non executable stack) in linux and DEP (Data

execution prevention) in Windows.
• Focus on preventing exploitation of memory corruption by making

stack non executable.

Non executable stack - Implementation

• Page table entries:

Non – executable stack limitations

• only protect case where attacker try to redirect the execution to
process stack.
• Bypassed by ROP.

ASLR [2005][Technique]

• Address space layout randomization
• first introduced in PAX project in year 2001. In an operating system

introduced in OpenBSD in 2003, followed by linux in 2005 and
Windows vista in 2007.

• randomize the address of most/all sections of a process memory
so that attacker cannot predict gadget or shellcode address.

ASLR

ASLR limitations

• Address prediction due to low entropy (specially kernel).
• Having module loaded with no ASLR support.
• Address leaks
• Heap spraying
• Advance attack like Side channel

Generation 2
mitigation

Overcome following
limitation of gen 1

mitigations:

No heap
based

mitigation

No
mitigation

for
indirect

calls

Existence
of ROP

chaining

Control flow integrity

• CFI mitigate against exploitation of memory corruption by
maintaining control flow by restricting illegal branch.

• For all generation 1 mitigation in place, there are cases where
attacker cause arbitrary code execution using ROP chaining.

Control flow integrity

CFI in action

Types of CFI

Forward Edge Integrity
Backward Edge Integrity

CFI timeline

2014

LLVM CFI

2014

CFG

2017

PAC

2018

BTI

2020

IBT

2020

Shadow Stack

Initial CFI implementation [2005] [Technique]

• CCFIR and bin-CFI.
• UID assigned to each valid target.
• Checks are inserted for indirect calls to ensure valid target are

reached.

Initial CFI implementation Limitation

• Just Proof of concept. Not implemented at major compilers.
• Performance impact due to added checks and tags on each

function calls.

Forward edge
Integrity

LLVM CFI [2014][Technique]

• Aims for protecting heap and indirect calls from getting exploited.

• Contain two different methods:

VTV • Virtual table
verification

IFCC • Indirect function
call check

VTV – Virtual table

• Address of virtual functions for
each function is present in
Virtual table.

• When Tiger object created, first
value in heap buffer is virtual
pointer.

virtual pointer

weight

height

animal_name[]Tiger heap
chunk structure

VTV - Working

• Can be used by passing following flag -fsanitize=cfi-vcall with clang++.

• Before using virtual function (rax+8), it is checked if the target is in
range of valid call site.

• Valid call sites are added during IR phase based on object signature.

VTV –valid call site Class human
{
 int height;
 int age;
 int get_age();
}

.

.

.
Call site 1 Class animal

{
 int legs;
 int weight;
 int get_weight();
}

Class car
{
 int weels;
 char brand[64];
 bool is_new();
}

.

.Call site 2

IFCC: Indirect Function-Call Checks

• Protects integrity of indirect function calls.
• Generates jump tables for indirect-call targets.
• On indirect call site, instrumented code is added to verify if target

points to correct jump table entry.

IFCC: Indirect Function-Call Checks

• Can be used by passing -fsanitize=cfi-icall to clang.

IFCC – Jump table generation

• Jump table ranges are generated based on function parameters

.

.
.

Jump table
range 1

.

.Jump table
range 2

Int addition(int a, int b)

Int subtraction(int a, int b)

Int division(int a, int b, bool sign)

Clang CFI limitation

• Performance penalty – upto 20% for VTV, upto 4% in IFCC
• Not protect against certain Code reuse attack

• COOP – At high level, it rely on finding protected targets in the application
binary which can legitimately called and doesn’t cause CFI violation.

• Certain call sites covers more than 50% of function coverage – void
foo(void)

kCFI – Fine gain CFI for linux kernel

• Limitations of CLANG CFI (IFCC)
• Performance bottleneck due to jump table based CFI implementation
• huge number of kernel function with similar prototype like void foo(void)
• Support for self-modifying code and LKMs
• Support for inline assemble code

kCFI – Fine gain CFI for linux kernel

• kCFI use tag based insertion. Tags are added using long nops.

kCFI – Fine gain CFI for linux kernel

• kCFI uses call graph detaching to reduce similar call sites.

kCFI – Fine gain CFI for linux kernel

• By employing tag-based assertions, kCFI supports self-modifying
code and LKMs.

• kCFI support inline assembly by rewriting of the assembly sources
using information extracted during code and binary analysis.

Control flow guard [2014][Technique]

• Used by passing /cfguard flag through msvc compiler (visual
studio compiler) .

• Adds new data directory “Load Configuration” for storing CFG
configurations.

• Functions that are valid indirect call targets are listed in the
GuardCFFunctionTable

CFG Internals

• Windows perform following task for CFI:
• Instrument around all indirect call with _guard_check_icall check.
• Mapping CFG bitmap in process memory during Process initialization

• NT loader generate CFG bitmap storing all the valid targets
address from the CFG whitelist in the module.

• __guard_dispatch_icall_fptr calls ntdll!LdrpValidateUserCallTarget
which during execution verify the call to be valid using CFG
Bitmap.

CFG internals

• CFG Bitmap working: Let’s assume address target addr: 0x00b01030

• Encircled blue(3 bytes): used to find offset in CFGBitmap.
• 1: valid address 0:invalid address.
• Encircled red: used to find if the address is 0x10 aligned or not.

CFG internals

CFG - Limitations

• Require ASLR and guard functions to be aligned.
• Unsupported 3rd party module presence.
• Not supported in JIT code.

Hardware
enforced

forward edge
Integrity

Intel and AMD has introduced
hardware supported Control

flow integrity to overcome
software CFI performance

impact.

IBT – Indirect
branch

tracking

BTI – Branch
target

identification

BTI [2018][Technique]

• Added in ARM v8.5, goal is to protect indirect jump to reach
unintended location.

• When enabled, the first instruction encountered after an indirect
jump must be a special BTI instruction.

• type of branch is store in PSTATE.BTYPE bits.

BTI - Internal
• adding -mbranch-protection=bti in gcc

• There are 3 variants of the BTI instruction:
• c -Branch Target Identification for

function calls
• j - Branch Target Identification for jumps
• jc - Branch Target Identification for

function calls or jumps.

IBT [2020][Technique]

• Added as part of Intel CET in tigerlake processors.
• When enabled, the CPU will ensure that every indirect branch

lands on a special instruction (endbr32 or endbr64).

IBT internals

IBT working

Backward
Edge Integrity

Backward edge mitigations

SHADOW STACK PAC

Shadow stack [2020][Technique]

• Added in intel TigerLake, use to address backward edge violation.
• replicates the return addresses that are pushed by the CALL

instruction.
• during ret stack and shadow stack value is matched, generates

INT #21 (Control Flow Protection Fault) in case of mismatch.
• protected from tamper through the page table protection.

Shadow stack Implementation

main()
0x0044aa mov rsp, rbp
0x0044af xor rax,rax
…
0x0046a0 call foo()
0x0046a4 test rax, rax

rip->

…

…

0x0046a4 <-SSP

Shadow stack

…

0x0048ff

0x0046a4 <-RSP

Process stack

Shadow stack Implementation

main()
0x0044aa mov rsp, rbp
0x0044af xor rax,rax
…
0x0046a0 call foo()
0x0046a4 test rax, rax

…

…

0x0046a4 <-SSP

Shadow stack

foo()
0x0064aa mov rsp, rbp
…
0x0046a0 retrip-> compare

…

0x0048ff

0x0046a4 <-RSP

Process stack

PAC [2017][Technique]

• Pointer Authentication Code
• ARM hardware feature. first added in Linux(Android) kernel in

2018.
• Ensure pointer in memory remains unchanged.

• return address pointer.
• data pointers

PAC internal

• Adds pointer authentication code to unused bits of pointer.

• PA key are protected by hardware. Modifier is created when
pointer is used.

• Can be used by flag –msign-return-address in gcc and clang.

PAC internal

Source: https://www.youtube.com/watch?v=UD1KKHyPnZ4

Memory Error detection tools

Sanitizers for Compiler [2012+][Tools]

• Added as part of effort to detect memory corruption in debug
environment before sending to production.

• Added in compiler like gcc, clang and msvc as tool.
• Usually rely on heavy instrumentation, hence impact

performance.

List of known sanitizers

• ASAN (Address sanitizer)
• Use after free (dangling pointer dereference)
• Heap buffer overflow
• Stack buffer overflow
• Global buffer overflow
• Use after return
• Initialization order bugs
• Memory leaks

• MSAN (Memory sanitizer)
• Uninitialized memory

List of known sanitizers

• UBSAN (Address sanitizer)
• Array subscript out of bounds
• Bitwise shifts that are out of bounds for their data type
• Dereferencing misaligned or null pointers
• Signed integer overflow
• Conversion to, from, or between floating-point types causing overflow

• Valgrind (Memcheck)

Memory error detection tools working

• Rely on three major components
• Instrumentation around target instruction
• Shadow memory
• Runtime library

• Ex: ASAN

MTE [2019] [Technique]

• Hardware enforced memory error detection tool.
• Can be used in production due to minimal performance impact.
• Used ARM addresses (Top byte ignore) to store tags.

MTE implementation

• Each memory granule has a tag (aka color)
• Every pointer has a tag
• On allocation, both memory and pointer get a matching random

tag

MTE implementation

• Each memory granule has a tag (aka color)
• Every pointer has a tag
• On allocation, both memory and pointer get a matching random

tag
• On pointer dereference, pointer tag must match memory tag

MTE implementation

• Each memory granule has a tag (aka color)
• Every pointer has a tag
• On allocation, both memory and pointer get a matching random

tag
• On pointer dereference, pointer tag must match memory tag

Securing future using Rust

• Linux and windows (kernel) developers are moving toward rust
lang due to absence of memory corruption.

• Has concept of ownership.
• Equivalent performance for low level usage.

Conclusion

• Memory corruption are there to stay but exploitation became
harder and harder.

• Application developer need to identify what mitigations need to be
added during compile time.

• Full research : https://nixhacker.com

https://nixhacker.com/

Thank you
Any questions?

	Folie 1: Nostalgic memory- Remembering all the wins and loses of memory corruptions
	Folie 2: $whoami
	Folie 3: Agenda
	Folie 4: Categorizing Mitigations:
	Folie 5: Category 2
	Folie 6: Quick intro to memory corruption
	Folie 7: Intro to Memory corruption
	Folie 8: Intro to Memory corruption
	Folie 9: Other types of memory corruption
	Folie 10: When it all started
	Folie 11: Gen 1 timeline
	Folie 12: BoundCheckers [Tool][1992]
	Folie 13: BoundCheckers – Capability and Working
	Folie 14: Limitation
	Folie 15: Stack Guard [1997][Technique]
	Folie 16: Stack Guard
	Folie 17: Stack Guard – Linux implementation
	Folie 18: Stack Guard – Linux implementation
	Folie 19: Stack Guard – Windows implementation
	Folie 20: Stack Guard – Windows kernel
	Folie 21: Limitation of stack guard
	Folie 22: Stack Shield [2000][Tool]
	Folie 23: Stack Shield - Implementation
	Folie 24: StackGhost [2001][Technique]
	Folie 25: StackGhost Implementation – Protect return address
	Folie 26: StackGhost Limitation
	Folie 27: ProPolice [2004][Technique]
	Folie 28: ProPolice Implementation
	Folie 29: Libsafe and Libverify [2000][Tool]
	Folie 30: Libsafe and Libverify
	Folie 31: Non executable stack [2004] [Technique]
	Folie 32: Non executable stack - Implementation
	Folie 33: Non – executable stack limitations
	Folie 34: ASLR [2005][Technique]
	Folie 35: ASLR
	Folie 36: ASLR limitations
	Folie 37: Generation 2 mitigation
	Folie 38: Control flow integrity
	Folie 39: Control flow integrity
	Folie 40: Types of CFI
	Folie 41: CFI timeline
	Folie 42: Initial CFI implementation [2005] [Technique]
	Folie 43: Initial CFI implementation Limitation
	Folie 44: Forward edge Integrity
	Folie 45: LLVM CFI [2014][Technique]
	Folie 46: VTV – Virtual table
	Folie 47: VTV - Working
	Folie 48: VTV –valid call site
	Folie 49: IFCC: Indirect Function-Call Checks
	Folie 50: IFCC: Indirect Function-Call Checks
	Folie 51: IFCC – Jump table generation
	Folie 52: Clang CFI limitation
	Folie 53: kCFI – Fine gain CFI for linux kernel
	Folie 54: kCFI – Fine gain CFI for linux kernel
	Folie 55: kCFI – Fine gain CFI for linux kernel
	Folie 56: kCFI – Fine gain CFI for linux kernel
	Folie 57: Control flow guard [2014][Technique]
	Folie 58: CFG Internals
	Folie 59: CFG internals
	Folie 60: CFG internals
	Folie 61: CFG - Limitations
	Folie 62: Hardware enforced forward edge Integrity
	Folie 63: BTI [2018][Technique]
	Folie 64: BTI - Internal
	Folie 65: IBT [2020][Technique]
	Folie 66: IBT internals
	Folie 67: IBT working
	Folie 68: Backward Edge Integrity
	Folie 69: Backward edge mitigations
	Folie 70: Shadow stack [2020][Technique]
	Folie 71: Shadow stack Implementation
	Folie 72: Shadow stack Implementation
	Folie 73: PAC [2017][Technique]
	Folie 74: PAC internal
	Folie 75: PAC internal
	Folie 76: Memory Error detection tools
	Folie 77: Sanitizers for Compiler [2012+][Tools]
	Folie 78: List of known sanitizers
	Folie 79: List of known sanitizers
	Folie 80: Memory error detection tools working
	Folie 81: MTE [2019] [Technique]
	Folie 82: MTE implementation
	Folie 83: MTE implementation
	Folie 84: MTE implementation
	Folie 85: Securing future using Rust
	Folie 86: Conclusion
	Folie 87: Thank you

