Nostalgic memory- >

Remembering all the wins and loses of (
memory corruptions

Shubham Dubey

JE E PRIS®

$whoami

* Security Researcher @ Microsoft
* Expertise in low level security

* Follow @nixhacker

Agenda

* Basics of memory corruption

* Generation 1 mitigations

* Generation 2 mitigations

* Tools-Memory error detection
* Future of Memory corruptions
* Memory corruption matrix

e Conclusion

Categorizing Mitigations:

Gen 2 (after 2010)

e Covers the missing gaps of
Generation 1 mitigations.

e Still been improved

Gen 1 - (before 2010)

e Mostly discovered/added in early
years when memory corruptions

where at peak.
e Currently Stable state.

Category 2

TOOLS TECHNIQUES

IANYSEC

[6984953.972864] [<ffffffffB1128160:] __perf_remove_from_context+0xa0s0xd0
[6984963.973155] [<Tfffffffa112824h>] __perf_event_exit_context+0x7h/0xe0
[6984963.973427] [<TfffffffE11281d0:] 7 __perf_remove_from_context+0<d0s0xd0
[6984964.009699] [<ffffffff8l10bcdc?:] smp_call_function_single+0x147/0x160
[6984964.010030] [<ffffffff811256bc:] perf_event_exit_cpu+0xbc/0x100

[6384964 . 010296] [<TFfTFfftE811261T77>] perf_reboot+0x27/0x50

[6984964 . 163576] [<ffffffffB16f665d:] notifier_call_chain+0xdds0x70
[6984964.163871] [<fffFfffffB1085938>] __blocking_notifier_call_chalin+0x58/0x80
[6984964 . 164144] [<Tfffffff81085976>] hlocking_notifier_call_chain+0xla/ 0x20
[6984964.164532] [<ffffffff81072f7d>] kernel_restart_prepare+0xlds/ 0x40
[69849364.1647939] [<ffffffft81072Fthae:] kernel_restart+0xlas/0xG60

[6984964 . 165055] [<TFfFFfTf810731d9:] sys_reboot+0x1b3/ 0280

[6984964 . 260791] [<TFfTFfffE81140d30:] 7 do_writepages+0x20,0x40

[E984964 .261155] [<ffffffffB811baab2:] 7 iput+0x32/0x50

[B984964 . 261613] [<TfffffffE811daBR2E>] 7 iterate_bdevs+0xl112/0x130

[6984964 . 261869] [<ffffffffB16T3435:] 7 do_dewvice_not_available+0x15/0x%20
[6984964.262145] [«<ffffffffolafafod:] system_call_fastpath+0xlas0xlf

[6984964 .262405] Code: 89 c7 48 89 do 44 89 06 48 cl ed 20 89 9 48 09 cd 5d c3
BB 90 55 89 f0 89 f9 48 89 g5 0f 30 31 cd 5d c3 66 90 55 39 9 48 89 g5 <ofx 33
89 c7 48 89 d0 48 c1 e0 20 89 f9 48 09 cf 5d c3 0f 1f 84

[6984964.26574A] RIF [<ffFffFFFTE1045006>] native_read_pmc+0x6/0x20

[B984964 . 266078] RSP <ffff88003a819b40:

[6984964.266405] ---[end trace f2dald8daaldceedl]---

Segmentation fault

Intro to Memory corruption

int admin_login()
{
char password[64];
strcpy(password, argv[1]);
if (strcmp(password, "admini123#$") == 0)

{
printf(“Sucessfully login\n");
admin();
}
else
{
printf("Password doesn't match. Unable to login.\n");
exit();
}
return 0;

Intro to Memory corruption

int admin_login()
{
char password[64];
strcpy(password, argv[1]);
if (stremp(password, "admin1Z3#") == 0)

{ Return address Return address

printf("Sucessfully login\n"); Stack base pointer
admin(); (rbp) nop sledge

password[cd] shellcode

}
else

{
printf("Password doesn't match. Unable to login.\n");
exit();

}

return 0;

IANYSEC

Other types of memory corruption

* Heap overflow
* Double free

* Indirect function calls modification
e OOB read/write
* NULL pointer dereference

When it all started

fingerd unix application which was exploited by
Morris worm.

1996

phrack edition 49 “Smashing the stack for fun

and profit” in 1996

IANYSEC

Gen 1 timeline

BoundCheck Stack Shield Propolice

1992 2000

% % \'%

1997

StackGuard

IANYSEC

BoundCheckers [Tool][1992]

* Memory leaks detection suite released by NuMega Corp.
* Capable of detecting array and buffer overrun conditions.
* Currently part of DevPartner studio in Visual studio.

BoundCheckers — Capability and Working

* memory corruption problems caused by the following

* Overrun allocated buffers
 Continued access to memory after it has been deallocated
* Deallocating a resource multiple times (e.g. double free)

* works by doing instrumentation to perform memory tracking and
and APl validation.

AAASEC

Limitation

* closed source nature caused less implementation and usage.
* Performance impact due to heavy instrumentation.

e Poor maintenance.

Stack Guard [1997][Technique]

* First major buffer overflow protection added to gcc 2.7 in year
1998 in Immunix distribution.

* it adds a random 8bytes data (called stack canaries) at the
starting of function stack frame

* During the function return, it match if the canary is same or not.

* During exit if the canary is found to be modified, the program gets
abort.

IANYSEC

Stack Guard

Return address

Stack Canary

Stack base pointer
(rop)

password[G4]

Return address

Stack Canary

nop sledge

shellcode

Stack Guard — Linux implementation

; int __cdecl main(int argc, const cha
public main
main proc near

eax, ©
var_60= qword ptr -68h rcx, [rbp+var_8]
var_54= dword ptr -54h rcx, fs:28h

dest= byte ptr -56h j short locret_11E7
var_8= gword ptr -8

5 __unwind {
rbp
rbp, rsp
rsp, 66h
[rbp+var_54], edi
[rbp+var_68], rsi locret_11E7:
rax, fs:28h leave
[rbp+var_8], rax retn

eax, eax .
rax, [rbp+var 60] ; } // starts at 1165

rax, 8 main endp

Function prologue Function epilogue

AAISEC

Stack Guard — Linux implementation

* What all are protected (based on gcc flag):
* -fstack-protector
» -fstack-protector-strong
* -fstack-protector-all

e Canaries on linux kernel
e CONFIG_CC _STACKPROTECTOR
e CONFIG_CC _STACKPROTECTOR_STRONG
* -CONFIG_CC_STACKPROTECTOR_ALL

AAASEC

Stack Guard — Windows implementation

* introduced in Windows in year 2003 with visual studio support for
/gs flag.

rcx, [rbp+13@h+var_18]
rcx, rbp ; StackCookie

rax, cs:__security_cookie j_security check cookie

rsp, [rbp+128h]

rbp+136h+var 18 rdi

rbp

Function Prologue

Function Epilogue

* The callj__security_check_cookie will verify if rcx is set to 0 or not.
If not than it will abort the program otherwise return.

IANYSEC

Stack Guard — Windows kernel

rbx
rsp, 76h
rax, gqword ptr [ntkrnlmp! securlity cookie (fffff8e

rax, rsp
gword ptr [rsp+68h], rax

Function Prologue

rcx, gword ptr [rsp+68h]
rcx, rsp
ntkrnlmp! security check cookie (fffff8047dc6boOde)

rsp, 76h
Operation (rbx)

Function Epilogue

Limitation of stack guard

* Detect overflow but not prevent it (Can be major issue in Kernel
architecture).

* Guessed by brute force in certain implementation.
* Not prevent modification of local variable.

Stack Shield [2000][Tool]

* Consist of shieldgcc and shieldg++ to compile c/c++ binary with
stackshield protection.

e Two main feature

* the Global Ret Stack (default)
* the Ret Range Check.

* GRS save the return address in a separate memory space named
retarray.

* RRC detect and stop attempts to return into addresses higher
than that of the variable shielddatabase

IANYSEC

Stack Shield - Implementation

function_prologue:

pushl
pushl

movl
cmpl

jbe
movl
movl

Y%eax
Yedx

retptr,%eax
%heax,rettop
.LSHIELDPROLOG
8(%esp) ,hedx
%edx, (Yeax)

retptr is where the clone is saved
if retptr is higher than allowed
just don’t save the clone

get return address from stack

save it in global space

function_epilogue:
leave

pushl Jeax
pushl Jedx

addl $-4,retptr //
mov1l retptr,jeax
cmpl heax,rettop /7
jbe .LSHIELDEPILOG //
movl (heax) ,%edx
movl hedx,8(%esp) //

copies %ebp into %esp,
and restores Jebp from stack

allways decrement retptr

is retptr in the reserved memory?
if not, use return address from stack

copy clone to stack

StackGhost [2001][Technique]

* Hadware enforced stack overflow protection for sparc
architecture.

* uses register windows in SPARC architecture to make stack
overflow exploitation harder.

tation — Protect return address

StackGhost Limitation

* Randomness of XOR cookie is low that can be easily predicted.
* Techniques based on detection but not protection.

ProPolice [2004][Technique]

* Patches added by IBM in gcc to improve stack guard protection.

* |t detects modification of local variable that stack guard doesn’t
support.

ProPolice

Implementation

frame pointer— | previous frame pointer

arrays (B)

* Patch include the reordering of local variables to stack pointer—

place buffers after pointers to avoid the corruption of

pointers.

void bar(wvoid (#*funci)())
: : : {

* For protecting function pointer, . It makes anew local void (#func2)():

variable, copying the argument " func1® toit, and char buf [128];

changlng the reference to func1‘ to use the new ;»'c;{:;',,}'(buf, goteny ("EDNE"));

local variable. (#func1)(); (*func2)();

IANYSEC

Libsafe and Libverify [2000][Tool]}

* Used by loading precompiled dynamic library with any process.

* The libsafe intercepts all calls to library functions that are known
to be vulnerable from the loaded library.

* The libverify library relies on verification of function’s return
address before it is used.

* ltinject the verification code at the start of process execution via
rewriting the binary after it is written on the memory.

AAASEC

Libsafe and Libverify

void main() {

char buffer[96];

parameters strcpy(buffer large strlng)r = ‘ text

return; R (region
return addr } ‘

prev. frame pt
stack vars char *strepy(char *dest, const char *src) 4
/l compute length of input string J
/I compute upper bound of destination' e‘, buffer size
return addr // bounds check /
/[call libc's memcpy(}
prev. frame ptr // return /

‘_ libsafe
‘ library

frame pointer—»

limit =
buffer

overflow
to this

region

char * memcpy(void *dest, cq,,?’st void *src, size_tn) {

=

1 libc
stack pointer—» char *strcpy(char dest, const char *src) { " library

o

stack address space

Non executable stack [2004] [Technique]

* Software mitigation added in 1998. Hardware support introduced
In 2001 by Intel/AMD.

* Merged in gcc in 2004.

* Called NX stack (Non executable stack) in linux and DEP (Data
execution prevention) in Windows.

* Focus on preventing exploitation of memory corruption by making
stack non executable.

IANYSEC

Non executable stack - Implementation

* Page table entries:

9

L
softwa
(v orkeirg
ol e =
N/
|Z
I':‘
L
| =
B
=T
=g
_ |

Non — executable stack limitations

* only protect case where attacker try to redirect the execution to
process stack.

* Bypassed by ROP.

ASLR [2005][Technique]

* Address space layout randomization

* first introduced in PAX project in year 2001. In an operating system

Introduced in OpenBSD in 2003, followed by linux in 2005 and
Windows vista in 2007.

* randomize the address of most/all sections of a process memory
so that attacker cannot predict gadget or shellcode address.

ASLR

IANYSEC

shubham@MININT-1T2PIDD:

Address
Address
Address
Address
Address

shubham@MININT-1T2PIDD:

Address
Address
Address
Address
Address

shubham@MININT-1T2PIDD:

Address
Address
Address
Address
Address

shubham@MININT-1T2PIDD:

Address
Address
Address
Address
Address

shubham@MININT-1T2PIDD:

Address
Address
Address
Address
Address

of
of
of
of
of

of
of
of
of
of

of
of
of
of
of

of
of
of
of
of

of
of
of
of
of

variable
variable
variable
variable
variable

variable
variable
variable
variable
variable

variable
variable
variable
variable
variable

variable
variable
variable
variable
variable

variable
variable
variable
variable
variable

in
in
in
in
in

in
in
in
in
in

in
in
in
in
in

in
in
in
in
in

in
in
in
in
in

~/memory_protection$./a.

stack is Ox7fffc3c31fdd
heap is 0x55629504e2a0
rdata is 0x556293764008
bss is 0x55629376603c
text is 0x556293763145

~/memory_protection$./a.

stack is Ox7ffdb2f31a2u
heap is 0x560c588042a0
rdata is 0x560c56aeab08
bss is 0x560c56aecO3c
text is 0x560c56ae91U5

~/memory_protection$./a.

stack is Ox7ffe2005a5cu
heap is 0x557fa68e72a0
rdata is 0x557fa5258008
bss is 0x557fa525a03c
text is Ox557fa5257145

~/memory_protection$./a.

stack is 0x7ffe25223104
heap is 0x5580eaaae2a0
rdata is 0x5580e9c05008
bss is 0x5580e9c0703c
text is 0x5580e9cO4145

~/memory_protection$./a.

stack is Ox7fffuGblO76u
heap is 0x55d@a2fcd2a0
rdata is 0x55d0a2a2c008
bss is 0x55d0a2a2e03c
text is 0x55d0a2a2blu5

out

out

out

out

out

ASLR limitations

* Address prediction due to low entropy (specially kernel).
* Having module loaded with no ASLR support.

* Address leaks

* Heap spraying

* Advance attack like Side channel

Generation 2
mitigation

Overcome following
limitation of gen 1
mitigations:

No

No heap mitigation Existence
based for of ROP

mitigation Indirect chaining
calls

Control flow integrity

* CFl mitigate against exploitation of memory corruption by
maintaining control flow by restricting illegal branch.

* For all generation 1 mitigation in place, there are cases where
attacker cause arbitrary code execution using ROP chaining.

Control flow integrity

CFlin action

Types of CFI

Forward Edge Integrity

Backward Edge Integrity Func f1()

I .
L Forward edge ¥ Func TEU

CFl timeline

LLVM CFlI

2014

% %

2014

Shadow Stack

IANYSEC

Initial CFl implementation [2005] [Technique]

* CCFIR and bin-CFl.
* UID assigned to each valid target.

* Checks are inserted for indirect calls to ensure valid target are
reached.

bool less than(int x, int y);

bool sort(int a[], int len, comp_func t fptr
i

if (fptr(ali], a[i+i]))

void sort_1(int a[], int len) voi
il s

sort(a, len, less_than);

Initial CFl implementation Limitation

* Just Proof of concept. Not implemented at major compilers.

* Performance impact due to added checks and tags on each
function calls.

Forward edge
Integrity

LLVM CFI [2014][Technique]

* Aims for protecting heap and indirect calls from getting exploited.

e Contain two different methods:

e Virtual table

VIV verification

¢ |[ndirect function

IFCC call check

IANYSEC

class Animal

VTV —Virtual table e

int weight;
virtual int getWeight() { return 12;};
virtual int getMass() { return 120;};

. . o
* Address of virtual functions for
eaCh fLInCtIOn |S present |n class Tiger: public Animal {
. ublic:
Virtual table. P it weight;
. . . int height;
* When Tiger object created, first char animal_name[64];
. . . int getWeight() {return weight;};
value in heap buffer is virtual ey ity s
p()lnter int getname() {return animal_name;};
. }
virtual pointer
int main()
weight {
height Tiger t1;
Tiger heap animal_name(] Animal *al = &t1;

chunk structure

IANYSEC

VTV - Working
* Can be used by passing following flag _With clang++.

main:
void var_28

Tiger::Tiger(&var_28)

int64_t = var_28.q
if (((- 0x462050) u>> 5 | (FaX - 0x402058) << Ox3b) u<= 1)
l ¥
std::ostream: :operator<<(this: &std::cout, __n: (*(- + 8))()) trap(6)
return ©

* Before using virtual function (rax+8), it is checked if the targetis in
range of valid call site.

* Valid call sites are added during IR phase based on object signature.

IANYSEC

VTV —valid call site

Call site 2

IANYSEC

Call site 1 -

Class human

{
int height;
int age;
int get_age();
}
Class animal
{
int legs;
int weight;
int get_weight();
}
Class car
{
int weels;
char brand[64];
boolis_new();
}

IFCC: Indirect Function-Call Checks

* Protects integrity of indirect function calls.
* Generates jump tables for indirect-call targets.

* On indirect call site, instrumented code is added to verify if target
points to correct jump table entry.

IFCC: Indirect Function-Call Checks

* Can be used by passing sfsanitize=cfi-icall to clang.

; _unwind {

int add(int a, int b) { rbp
. rbp, rsp
return a + b; rop. 20h
} [rbp+var_14], ©
rax, offset add
[rbp+operation], rax ; copying the address of add to ocepration
rax, [rbp+operation]
int perfor'm_operation() { rcx, offset add ; getting the address of add from jmp table
rax, rcx ; comparing if the address match before the call
short loc_401162

int (*operation)(int, int);
char data_buffer[64];

[rbp+var_4], eax
esi, [rbp+var_4]

. rdi, offset format ; "Result of addition: %d\n"
operation = add; al, @
X . _printf
int result = operation(10, 5); eax, eax
. " C " rsp, 26h
printf("Result of addition: , result); rbp

starts at 401130

IANYSEC

IFCC - Jump table generation

* Jump table ranges are generated based on function parameters

Jump table -

o .

Jump table
range 2

Int addition(int a, int b)

Int subtraction(int a, int b)

Int division(int a, int b, bool sign)

IANYSEC

Clang CFI limitation

* Performance penalty — upto 20% for VTV, upto 4% in IFCC

* Not protect against certain Code reuse attack

* COOP - At high level, it rely on finding protected targets in the application
binary which can legitimately called and doesn’t cause CFl violation.

* Certain call sites covers more than 50% of function coverage - void
foo(void)

AAASEC

kKCFI - Fine gain CFl for linux kernel

* Limitations of CLANG CFI (IFCC)

* Performance bottleneck due to jump table based CFl implementation

* huge number of kernel function with similar prototype like void foo(void)
* Support for self-modifying code and LKMs

* Support forinline assemble code

kKCFI - Fine gain CFl for linux kernel

* KCFl use tag based insertion. Tags are added using long nops.

(a) Prologue(s) instrumentation (tag).

> <func>:
: nopl Oxbcbeed

(b) Indirect call site(s) instrumentation (guard).

cmpl $0xbcbee9, 0x4 (%rax)
s Jje <7>

push hrax

callq <kcfi_vhndl>

Pop %rax

callg *)rax

nopl 0x138395f

kKCFI - Fine gain CFl for linux kernel

* KCFl uses call graph detaching to reduce similar call sites.

<A>:
call b_ clone
<A>: tag 0 Ar~0d
call b
tag Oxdeadbeef ¥ 4
<Z>: 1f(someth1ng) r = &B
1f(someth1ng) = &B e]_se ntr = &(
else otr = & o
P call *ptr
tag Bxdeadbeef tag Oxdeadbeef
: <C>: : <C>:
check Oxdeadbeef check Oxdeadbeef))
ot cot check @xdeadbeef check Oxdeadbeef
ret ret
<B_clone>:
check 9x:
ret

IANYSEC

kKCFI - Fine gain CFl for linux kernel

* By employing tag-based assertions, KCFl supports self-modifying
code and LKMs.

* KCFl support inline assembly by rewriting of the assembly sources
using information extracted during code and binary analysis.

Control flow guard [2014][Technique]

* Used by passing-ﬂag through msvec compiler (visual
studio compiler) .

* Adds new data directory “Load Configuration” for storing CFG
configurations.

* Functions that are valid indirect call targets are listed in the
GuardCFFunctionTable

CFG Internals

* Windows perform following task for CFl:

* Instrument around all indirect call with _check.

* Mapping CFG bitmap in process memory during Process initialization

* NT loader generate CFG bitmap storing all the valid targets
address from the CFG whitelist in the module.

+ _guard_dispatch_icall_fptr calls ntdll/LdrpValidateUserCallTarget

which during execution verify the call to be valid using CFG
Bitmap.

IANYSEC

CFG internals

* CFG Bitmap working: Let’s assume address target addr: -

00000000 10110000 00010000){00110000

* Encircled blue(3 bytes): used to find offset in CFGBitmap.
* 1. valid address O:invalid address.
* Encircled red: used to find if the address is 0x10 aligned or not.

IANYSEC

Internals

eckFor
_Format

5

p+7Eh+v
cs:__guard_di

[rsp

aResul mov Sp4+ 7 Bh+r
j_printf oy %, [rsp+
short loc_7FF619BDBFCE

frame

CFG - Limitations

* Require ASLR and guard functions to be aligned.
* Unsupported 3" party module presence.
* Not supported in JIT code.

Hardware
enforced
forward edge
Integrity

Intel and AMD has introduced
hardware supported Control
flow integrity to overcome
software CFl performance
Impact.

IBT — Indirect BTl - Branch

branch target
tracking Identification

BTl [2018][Technique]

* Added in ARM v8.5, goal is to protect indirect jump to reach
unintended location.

* When enabled, the first instruction encountered after an indirect
jump must be a special BTl instruction.

* type of branch is store in PSTATE.BTYPE bits.

BTl - Internal
+ adding -TblanCh=protection=bti| n scc

e There are 3 variants of the BTl instruction:

* ¢ -Branch Target Identification for
function calls

* j- Branch Target Identification for jumps

* jc - Branch Target Identification for
function calls or jumps.

IANYSEC

000000000000086¢c <add>:

86¢c: d5032u5f
870: dlood3ff
874 : b9000fed
878: b9080bel
87c: boueefel
880: boueObed
884 : 0b0000206
888: 910043ff
88c: d65f03ch
fe[eLofeloleefefeloe oo kege o)
890: d503245f
894 : dlood3ff
898: b9000fe0®
89c: b9000bel
8a0: boueefel
8al: boUuOObed
8a8: LUbeOEO20O
8ac: 910043Ff
8b0: d65f03ch
8bi: d503201f
8b8: d503201f

bti
sub
str
str
ldr
ldr
add
add
ret

<subtract>:

bti
sub
str
str
ldr
ldr
sub
add
ret
nop
nop

sp, #0x10
[sp, #12]
[sp, #8]
[sp, #12]
[sp, #8]
wl, wo
sp, #0O0x10

sp, #0O0x10
[sp, #12]
[sp, #8]
[sp, #12]
[sp, #8]
wl, wo@
sp, #0x16

IBT [2020][Technique]

* Added as part of Intel CET in tigerlake processors.

* When enabled, the CPU will ensure that every indirect branch
lands on a special instruction (endbr32 or endbr64).

IBT internals

<foo>:

?ptr =

AAASEC

endbr
&bar; if (user_id > @) return;
strcpy(..); do some magic
fptr();

<bar>:

X

IBT working

Function with Indirect Call/Jmp

call/jmp

WAIT_FOR_
ENDBRANCH

other
instruction

Backward
Edge Integrity

Back edge

Backward edge mitigations

SHADOW STACK PAC

IANYSEC

Shadow stack [2020][Technique]

* Added in intel TigerLake, use to address backward edge violation.

* replicates the return addresses that are pushed by the -
Instruction.

. during. stack and shadow stack value is matched, generates
INT #21 (Control Flow Protection Fault) in case of mismatch.

* protected from tamper through the page table protection.

Shadow stack Implementation

main() Shadow stack
0x0044aa mov rsp, rbp
0x0044af xor rax,rax

f]eL>0x0046a0 call foo() 0x0046a4 <-SSP

0x0046a4 test rax, rax

0x0048ff
0x0046a4 <-RSP

Process stack

Shadow stack Implementation

main() Shadow stack

0x0044aa mov rsp, rbp
0x0044af xor rax,rax

0x0046a0 call foo 0x00463a4 <-SSP
0x0046a4 test rax, rax

foo()
0x0064aa mov rsp, rbp

[E>l0x0046a0 ret compare 0x0048ff

0x0046a4 <-RSP

Process stack

AAASEC

PAC [2017][Technique]

* Pointer Authentication Code
* ARM hardware feature. first added in Linux(Android) kernel in
2018.

* Ensure pointer in memory remains unchanged.

* return address pointer.
* data pointers

PAC internal

* Adds pointer authentication code to unused bits of pointer.

I 64-bit modifier (M)

* PA key are protected by hardware. Modifier is created when
pointer is used.

* Can be used by flag_ In gcc and clang.

AAASEC

PAC internal

return address

func {

pacia LR, (SP ia key

astr LR ¢ PAC i PAC : return address

»>1dr LR PAC? ii PAC? return address

autia LR, (SP verify PAC

Source: https://www.youtube.com/watch?v=UD1KKHyPnZ4

Memory Error detection tools

The instuction at 0x0000000025C2E42B referenced
memory at 0x000000034D02F4. The memory could
not be read.

Click on OK to terminate the program
Click on CANCEL to debug the program

OK Cancel

Sanitizers for Compiler [2012+][Tools]

* Added as part of effort to detect memory corruption in debug
environment before sending to production.

* Added in compiler like gcc, clang and msvc as tool.

* Usually rely on heavy instrumentation, hence impact
performance.

List of known sanitizers

* ASAN (Address sanitizer)

* Use after free (dangling pointer dereference)
* Heap buffer overflow

» Stack buffer overflow

* Global buffer overflow

* Use after return

* Initialization order bugs

* Memory leaks

* MSAN (Memory sanitizer)

* Uninitialized memory

AAASEC

List of known sanitizers

* UBSAN (Address sanitizer)

* Array subscript out of bounds

* Bitwise shifts that are out of bounds for their data type

* Dereferencing misaligned or null pointers

* Signed integer overflow

* Conversion to, from, or between floating-point types causing overflow

* Valgrind (Memcheck)

IANYSEC

Memory error detection tools working

* Rely on three major components
* Instrumentation around target instruction
« Shadow memory
* Runtime library

e Ex: ASAN

AAASEC

MTE [2019] [Technique]

* Hardware enforced memory error detection tool.
* Can be used in production due to minimal performance impact.

* Used ARM addresses (Top byte ignore) to store tags.

.) VT ranslation table -)
Tagging[56:64] selector[49:56] Virtual Address[0:48]

— T

(TTBRO) TTBR1

— _—

Translation Table Base Registers

MTE implementation

* Each memory granule has a tag (aka color)

* Every pointer has a tag

* On allocation, both memory and pointer get a matching random
tag

MTE implementation

* Each memory granule has a tag (aka color)

* Every pointer has a tag

* On allocation, both memory and pointer get a matching random
tag

* On pointer dereference, pointer tag must match memory tag

All is good,

proceed

MTE implementation

* Each memory granule has a tag (aka color)

* Every pointer has a tag

* On allocation, both memory and pointer get a matching random
tag

* On pointer dereference, pointer tag must match memory tag

- . - Raise an
*(pl +N) = ...; x P= exception!

Securing future using Rust

* Linux and windows (kernel) developers are moving toward rust
lang due to absence of memory corruption.

* Has concept of ownership.
* Equivalent performance for low level usage.

Conclusion

* Memory corruption are there to stay but exploitation became
harder and harder.

* Application developer need to identify what mitigations need to be
added during compile time.

e Full research:

https://nixhacker.com/

	Folie 1: Nostalgic memory- Remembering all the wins and loses of memory corruptions
	Folie 2: $whoami
	Folie 3: Agenda
	Folie 4: Categorizing Mitigations:
	Folie 5: Category 2
	Folie 6: Quick intro to memory corruption
	Folie 7: Intro to Memory corruption
	Folie 8: Intro to Memory corruption
	Folie 9: Other types of memory corruption
	Folie 10: When it all started
	Folie 11: Gen 1 timeline
	Folie 12: BoundCheckers [Tool][1992]
	Folie 13: BoundCheckers – Capability and Working
	Folie 14: Limitation
	Folie 15: Stack Guard [1997][Technique]
	Folie 16: Stack Guard
	Folie 17: Stack Guard – Linux implementation
	Folie 18: Stack Guard – Linux implementation
	Folie 19: Stack Guard – Windows implementation
	Folie 20: Stack Guard – Windows kernel
	Folie 21: Limitation of stack guard
	Folie 22: Stack Shield [2000][Tool]
	Folie 23: Stack Shield - Implementation
	Folie 24: StackGhost [2001][Technique]
	Folie 25: StackGhost Implementation – Protect return address
	Folie 26: StackGhost Limitation
	Folie 27: ProPolice [2004][Technique]
	Folie 28: ProPolice Implementation
	Folie 29: Libsafe and Libverify [2000][Tool]
	Folie 30: Libsafe and Libverify
	Folie 31: Non executable stack [2004] [Technique]
	Folie 32: Non executable stack - Implementation
	Folie 33: Non – executable stack limitations
	Folie 34: ASLR [2005][Technique]
	Folie 35: ASLR
	Folie 36: ASLR limitations
	Folie 37: Generation 2 mitigation
	Folie 38: Control flow integrity
	Folie 39: Control flow integrity
	Folie 40: Types of CFI
	Folie 41: CFI timeline
	Folie 42: Initial CFI implementation [2005] [Technique]
	Folie 43: Initial CFI implementation Limitation
	Folie 44: Forward edge Integrity
	Folie 45: LLVM CFI [2014][Technique]
	Folie 46: VTV – Virtual table
	Folie 47: VTV - Working
	Folie 48: VTV –valid call site
	Folie 49: IFCC: Indirect Function-Call Checks
	Folie 50: IFCC: Indirect Function-Call Checks
	Folie 51: IFCC – Jump table generation
	Folie 52: Clang CFI limitation
	Folie 53: kCFI – Fine gain CFI for linux kernel
	Folie 54: kCFI – Fine gain CFI for linux kernel
	Folie 55: kCFI – Fine gain CFI for linux kernel
	Folie 56: kCFI – Fine gain CFI for linux kernel
	Folie 57: Control flow guard [2014][Technique]
	Folie 58: CFG Internals
	Folie 59: CFG internals
	Folie 60: CFG internals
	Folie 61: CFG - Limitations
	Folie 62: Hardware enforced forward edge Integrity
	Folie 63: BTI [2018][Technique]
	Folie 64: BTI - Internal
	Folie 65: IBT [2020][Technique]
	Folie 66: IBT internals
	Folie 67: IBT working
	Folie 68: Backward Edge Integrity
	Folie 69: Backward edge mitigations
	Folie 70: Shadow stack [2020][Technique]
	Folie 71: Shadow stack Implementation
	Folie 72: Shadow stack Implementation
	Folie 73: PAC [2017][Technique]
	Folie 74: PAC internal
	Folie 75: PAC internal
	Folie 76: Memory Error detection tools
	Folie 77: Sanitizers for Compiler [2012+][Tools]
	Folie 78: List of known sanitizers
	Folie 79: List of known sanitizers
	Folie 80: Memory error detection tools working
	Folie 81: MTE [2019] [Technique]
	Folie 82: MTE implementation
	Folie 83: MTE implementation
	Folie 84: MTE implementation
	Folie 85: Securing future using Rust
	Folie 86: Conclusion
	Folie 87: Thank you

