
The Evolution of Memory Exploitation in Linux



Whoami

● Ofri Ouzan

● Twitter: @B4MB1

● Security Researcher.

● Specializes in vulnerability research, exploit development, 

and developing automating tools.

● Enjoys sharing findings and insights with the community.
○ https://medium.com/@ofriouzan



Agenda

- User Mode Attack Techniques and Security Mechanisms.

- Transition from User Mode to Kernel Mode.

- Kernel Mode Attacks and Security Mechanisms.

- Modern Privilege Escalation Techniques.

- Current State and Future Prospects.

● Linux Focus: Not Windows - intel implementations.



History

- Linux 0.01 Released: September 17, 1991.

- Memory Regions: Readable, Writable, Executable (RWX).

- Memory Addresses: Hardcoded (Static).

- Simpler Attacks in Early Days.



Exploiting Memory Vulnerabilities

- Exploiting a vulnerability requires 3 tasks: 

- Find a vulnerability.

- Redirect: Manipulating program control flow.

- Execute malicious code.

Vulnerability Redirect Execute







Smashing the Stack for Fun and Profit

- “Smashing the Stack for Fun and Profit” by Aleph One (November 1996).

- RWX stack.

- Static memory addresses.



NX (AKA - DEP, XN, XD)

- Introduced in Linux kernel 2.6.8 in 2004.

- Prevents execution by marking memory pages as 'Non-eXecutable' (e.g., heap, stack).

- Memory regions governed by access flags:

- RO+NX (.rodata).

- RW+NX (.data).

- RO+X (.text).

- Implements W^X- prevents injecting shellcodes.



readelf -l <ELF file>

Read Only + Non Executable

Read Only + Executable

Read Write + Non Executable



Code Reuse Attacks

- Result of W^X: Shellcode injection not feasible.

- Utilize existing code in memory for malicious actions.

- Return to existing code.

- Return to libraries (e.g., RET2LIBC).



- system("/bin/sh")

- Locate memory addresses of system() and pointer to "/bin/sh".

RET2LIBC

- Vulnerability -> Redirect execution to system() -> Execute "/bin/sh".



Memory Leak

/proc information 

leaks

- Introduced in Linux kernel 2.6.12 in 2005.
- Prevents attackers from predicting memory locations in User Space using a random offset.
- Limitations:

○ Low entropy (32bit).
○ Initially randomized only the stack and the libraries.

- Bypass techniques:

ASLR Evolution

Return to non-

randomized 

RET2TEXT

Brute Force

Memory Spray 

Nop Sleds



Code Reuse Attacks

- Result of W^X: Shellcode injection not feasible.

- Utilize existing code in memory for malicious actions.

- Return to existing code.

- Return to libraries (e.g. RET2LIBC).

- Return to non-randomized locations (e.g. RET2TEXT).

- Oriented Programming.

2023



Oriented Programming
2023

CVE-2016-2384 - ROP and JOP gadgets used for an exploit.

(Taken From: https://github.com/xairy/kernel-exploits/blob/master/CVE-2016-2384/poc.c)

- Chain executable gadgets to perform malicious actions.

- Gadgets consist of one or more assembly instructions that end with execution redirection.

- Backward edge - gadgets ending with “ret” (AKA ROP).

- Forward edge - gadgets ending with indirect “jmp” or “call” (AKA JOP, PCOP).



From User Mode to Kernel Mode



- Return to User space from Kernel space.

- The Kernel had RWX access to User Space.

- Unlikely to find ways to elevate privileges in the Kernel.

- Attackers have control in the User Space.

RET2USR

- Kernel Space vulnerability -> Redirect execution to User Space -> Execute a Payload.

CVE-2010-3437 - Exploit Integer Underflow in Kernel -> Redirect execution to a fake 

structure in User Space -> Copy data from Kernel Space to User Space.



CVE-2017-11176 - disables SMEP using move instructions.

(Taken from: https://github.com/lexfo/cve-2017-11176/blob/master/cve-2017-11176.c)

SMEP and SMAP

- SMEP (Supervisor Mode Execution Prevention) - Linux Kernel 3.0 (2011).

- SMAP (Supervisor Mode Access Prevention) - Linux Kernel 3.7 (2012).

- Controlled via CR4 20th bit (SMEP) and 21st bit (SMAP).



KASLR Evolution

- Introduced in Linux Kernel 3.14 (2014).

- Enabled by default in Linux Kernel 4.12 (2017).

- Aims to increase the difficulty of code reuse attacks in kernel mode.

- Prevents attackers from predicting memory locations within the Kernel Space.

- Limitations:

○ Utilized a single random offset in the kernel text.

○ Randomized only once at boot.

- Bypass techniques:

○ Memory leak attacks.



Memory Leak Attacks

Spender's 

/proc/kallsyms

Read kernel 

pointers

CVE-2017-1000112

CVE-2018-5333 



KALLSYMS Technique 

(Taken From: https://github.com/bcoles/kernel-exploits/blob/6ba53ba024db2413cfe4843a482a8b532a6619b7/CVE-2018-5333/cve-2018-5333.c)



Read /proc/kallsyms with privileged user.

KPTR_RESTRICT - Prevent unprivileged users from reading kallsyms.

KPTR_RESTRICT = 1 - Unprivileged users will see function pointers as 0's.

Is KALLSYMS Still Possible?



Memory Leak Attacks

Xairy's syslog 

Read the dmesg

Spender's 

/proc/kallsyms

Read kernel 

pointers

CVE-2017-1000112

CVE-2018-5333 



(Taken From: https://github.com/bcoles/kernel-exploits/blob/6ba53ba024db2413cfe4843a482a8b532a6619b7/CVE-2018-5333/cve-2018-5333.c)

SYSLOG Technique



Is SYSLOG Still Possible?

Read dmesg with a privileged user.

DMESG_RESTRICT - Prevent unprivileged users from reading dmesg.

DMESG_RESTRICT = 1 - Unprivileged users could not read dmesg.



Memory Leak Attacks

Xairy's syslog 

Read the dmesg

Spender's 

/proc/kallsyms

Read kernel 

pointers

Jann Horn's 

mincore

Heap page 

disclosure (CVE-

2017-16994)

CVE-2017-1000112

CVE-2018-5333 



(Taken From: https://github.com/bcoles/kernel-exploits/blob/6ba53ba024db2413cfe4843a482a8b532a6619b7/CVE-2018-5333/cve-2018-5333.c)

Mincore Technique

Is Mincore Still Possible?



Memory Leak Attacks

Xairy's syslog 

Read the dmesg

Spender's 

/proc/kallsyms

Read kernel 

pointers

Jann Horn's 

mincore

Heap page 

disclosure (CVE-

2017-16994)

Lizzie's 

perf_event_open 

Find 

PERF_SAMPLE_I

P

CVE-2017-1000112

CVE-2018-5333 



(Taken From: https://github.com/bcoles/kernel-exploits/blob/6ba53ba024db2413cfe4843a482a8b532a6619b7/CVE-2018-5333/cve-2018-5333.c)

perf_event_open



- perf_event_paranoid > 1 - Unprivileged users cannot use PERF_SAMPLE_IP.

- Linux kernel > 4.6 - /proc/sys/kernel/perf_event_paranoid > 1.

Is perf_event Still Possible?

- perf_event_paranoid - Controls the use of the performance events.

- perf_event_paranoid = 4



Memory Leak Attacks

Xairy's syslog 

Read the dmesg

Spender's 

/proc/kallsyms

Read kernel 

pointers

Jann Horn's 

mincore

Heap page 

disclosure (CVE-

2017-16994)

Lizzie's 

perf_event_open 

Find 

PERF_SAMPLE_I

P

CVE-2017-1000112

CVE-2018-5333 

CVE-2019-18683 - Use race condition to extract information (kmsg)



CVE-2019-18683

- A race condition in 'kmsg' exposed the following:

- RSP - Calculate kernel stack top address.

- R11 - Calculate KASLR offset.

(Taken From: https://a13xp0p0v.github.io/2020/02/15/CVE-2019-18683.html)



Common Privilege Escalation Techniques



- prepare_kernel_cred(0)

- Send '0' value (root ID).

- Allocated a cred structure with root user privileges.

- commit_creds(prepare_kernel_cred(0))

- Send prepare_kernel_cred(0).

- Applies the root privileges.

Change Credentials

CVE-2023-35001

- Locate memory addresses of 'prepare_kernel_cred' and 'commit_creds' functions.

- Call the functions:

(Taken From: https://github.com/synacktiv/CVE-2023-35001/blob/master/main.go)



- modprobe_path kernel symbol is writable.

- Modprobe manages kernel modules.

- The modprobe command path is:

Modprobe

- Steps to execute the attack:

1. Locate modprobe_path.

2. Create a malicious User mode script.

3. Overwrite modprobe_path with a path to User mode script.

4. Trigger - call_modprobe()

■ Create a trigger file with an unknown signature.

■ Execute the trigger file.

5. call_modprobe() executes the path stored in modprobe_path.



Modprobe

CVE-2023-32233

(Taken From: https://github.com/oferchen/POC-CVE-2023-32233/blob/main/exploit.c)



Modprobe

CVE-2023-32233

(Taken From: https://github.com/oferchen/POC-CVE-2023-32233/blob/main/exploit.c)



What Does The Future Hold?



- Shadow Stack (SS)

- Backward edge (e.g., ROP).

- Isolated shadow stack.

- Stores return addresses.

- Compares return addresses.

- #CP (Control Protection) exception.

- Indirect Branch Tracking (IBT)

- Forward edge (e.g., JOP, PCOP).

- Compiler inserts 'endbr' instructions.

- Processor enforces presence of 'endbr'.

- #CP (Control Protection) exception.

Control Flow Enforcement (CET)

IBT SSCET



User Mode CET

readelf -n <ELF file>

gdb <ELF file> | disas <function>



Kernel Mode CET





HardeningMeter
Assess the security hardening of binaries and systems.
python3 HardeningMeter.py -f /bin/cp -s



Questions?
https://medium.com/@ofriouzan


	Folie 1
	Folie 2: Whoami
	Folie 3: Agenda
	Folie 4: History
	Folie 5: Exploiting Memory Vulnerabilities
	Folie 6
	Folie 7
	Folie 8: Smashing the Stack for Fun and Profit
	Folie 9: NX (AKA - DEP, XN, XD)
	Folie 10
	Folie 11: Code Reuse Attacks
	Folie 12: RET2LIBC
	Folie 13: ASLR Evolution
	Folie 14: Code Reuse Attacks
	Folie 15: Oriented Programming
	Folie 16: From User Mode to Kernel Mode
	Folie 17: RET2USR
	Folie 18: SMEP and SMAP
	Folie 19: KASLR Evolution
	Folie 20: Memory Leak Attacks
	Folie 21: KALLSYMS Technique 
	Folie 22: Is KALLSYMS Still Possible?
	Folie 23: Memory Leak Attacks
	Folie 24: SYSLOG Technique
	Folie 25: Is SYSLOG Still Possible?
	Folie 26: Memory Leak Attacks
	Folie 27: Mincore Technique
	Folie 28: Memory Leak Attacks
	Folie 29: perf_event_open
	Folie 30: Is perf_event Still Possible?
	Folie 31: Memory Leak Attacks
	Folie 32: CVE-2019-18683
	Folie 33: Common Privilege Escalation Techniques
	Folie 34: Change Credentials
	Folie 35: Modprobe
	Folie 36: Modprobe
	Folie 37: Modprobe
	Folie 38: What Does The Future Hold?
	Folie 39: Control Flow Enforcement (CET)
	Folie 40: User Mode CET 
	Folie 41: Kernel Mode CET 
	Folie 42
	Folie 43: HardeningMeter 
	Folie 44: Questions?

