
WEFF : P2P communication without 3rd party
Nikolaos Tsapakis, George Tselos

Who we are

● Nikolaos Tsapakis is a reverse engineering enthusiast and
poetry lover from Greece. He is working as a security engineer.
He has been writing papers or presented for Virus Bulletin,
2600, LeHack, Symantec, Hakin9, Athcon.

● George Tselos is a computer science tutor who lives and works
in Athens, Greece. He is interested in embedded systems,
microcontrollers and peripheral device development.

The problem

● p2p communication needs a 3rd party service to initiate like a stun
server

● reason is routers and nats in network infrastructure block direct
access to ports exposed to the internet (external ports)

● example of services that use 3rd party server are skype, zoom, viber

● why having a 3rd party subscription monitoring us ?

● https://www.cyberyodha.org/2023/04/what-is-stun-protocol.html

Solution

● brute force ports to trick application into establishing p2p
comms

● both users are behind home routers

● WEFF - (w)aiter and ch(eff)

● B runs waiter.py, then A runs cheff.py

● p2p comms established, users chat through the program

● UDP protocol & AES encrypted communications

● python 3

How it works

Waiter.py runs on B which periodically sends packets to A. This is to trick its own
router B into allowing to receive incoming packets from router A, in following
communication.

Waiter.py also sets application port on B to 12345 and destination port (router A
port) to 12345. The router B port x is unknown at that time. Since cheff.py has not
yet run on A there is no application port at that time on A.

Router A Router BHost A Host B

router port (12345) router port (x)cheff.py port (none yet) waiter.py port (12345)

(12345)

How it works

Cheff.py runs on A which starts sending packets to B sequentially from
lowest to highest destination port number (1, 2, ..., x-1, x, x+1, ...), brute
forcing the router B ports. Cheff.py on Host A sets application port to
12345.

Router A Router BHost A Host B

router port (x) waiter.py port (12345)cheff.py port (12345) router port (12345)

(12345)

(1)

(2)

(...)

How it works

One of the brute force packets from A (magic packet) has same destination
port number with listening router B port number (x). So, router B forwards
that packet to waiter.py on host B.

Router A Router BHost A Host B

router port (x) waiter.py port (12345)cheff.py port (12345)

magic packet (x)

router port (12345)

(1)

(2)

(...)

(12345)

How it works

At the same time, packet from B reaches cheff.py on A because the magic
packet has just passed through router A and B, which means router A is able
to process a packet from host B to host A as a reply.

Router A Router BHost A Host B

router port (x) waiter.py port (12345)cheff.py port (12345)

magic packet (x)

router port (12345)

(1)

(2)

(...)

(12345)(12345)

How it works

Host B will extract destination port (x) from magic packet and will send it to host A with a
new packet in its data. Host A now knows the destination port for host B (x) and will use
it on cheff.py to send all future packets to B. Now cheff.py terminates the brute force
process since port (x) is now known to A. Communications established.

Router A Router BHost A Host B

router port (x) waiter.py port (12345)cheff.py port (12345)

magic packet (x)

router port (12345)

(1)

(2)

(...)

(12345)

(12345, data = x)

Known limitations

● know IP for both hosts prior to establishing comms

● Tested only on home routers (1:1 port mapping on router A)

● delays while establishing communications

● network infrastructure related to UDP flood protection

Next steps

● only 1 ip known

● no need to brute force

● icmp over ipv6

● future work & presentation :)

Demo

● A, B on different geolocation and infrastructure

● A, B behind home routers

● presentation, demo, code at https://github.com/nitsa

● enjoy the demo

Q&A

Any questions ?

Thank you !

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14

