
STATE OF MEMORY SAFETY IN C++
RENÉ PFEIFFER

DEEPSEC

TLP:WHITE

https://deepsec.net/

WHOAMI

🆔 René „Lynx“ Pfeiffer
👍 working with/for Free Software since 1988, senior systems administrator
🛠 organisation team
☢ Study of
🕸 „on the Internet“ since 1992 (14.400 baud & faster)
⏳ 30+ years experience with software development, computing, and systems administration
🇩🇪 🇬🇧 🇨🇵 🇳🇴

DeepSec In-Depth Security Conference
theoretical physics

TLP:WHITE

https://deepsec.net/
https://en.wikipedia.org/wiki/Particle_physics
https://commons.wikimedia.org/wiki/File:Northern_Lights_(16846482676).jpg

WHY?
Blame the NSA!

TLP:WHITE

C++ IS ALMOST YOUNGER THAN RUST 😄
1979 - C with Classes
1982 - C++, Cfront compiler
1984 - C++ libraries
1989 - C++ v2.0
1998 - C++98
2011 - C++11 (Modern C++ with bugs)
2014 - C++14 (Modern C++)
2015 - C++ Core Guidelines
2015 - Rust v1.0 (work started 2006)

TLP:WHITE

BUFFER OVERFLOWS IN RUST
 - Rust <1.52 standard library Zip integer/buffer overflow
 - Rust <1.50 read_to_end() buffer overflow
 - Rust smallvec crate SmallVec::insert_many buffer overflow
 - Rust arr crate buffer overflow in Index and IndexMut
 - Rust ncurses crate buffer overflow because interaction with C functions is mishandled

 - Integer/buffer overflow in Rust Programming Language Standard Library via str::repeat
 - Buffer overflow & arbitrary code execution in

std::collections::vec_deque::VecDeque::reserve()
 - rust-base64 buffer overflow

This is not Rust bashing. All code can contain bugs.

CVE-2021-28879
CVE-2021-28879
CVE-2021-25900
CVE-2020-35887
CVE-2019-15548
CVE-2018-1000810
CVE-2018-1000657

CVE-2017-1000430

TLP:WHITE

file:///home/lynx/SUBAGA/presentations/DeepSec/FHStP_Memory_Safety/index.html
file:///home/lynx/SUBAGA/presentations/DeepSec/FHStP_Memory_Safety/index.html
file:///home/lynx/SUBAGA/presentations/DeepSec/FHStP_Memory_Safety/index.html
file:///home/lynx/SUBAGA/presentations/DeepSec/FHStP_Memory_Safety/index.html
file:///home/lynx/SUBAGA/presentations/DeepSec/FHStP_Memory_Safety/index.html
file:///home/lynx/SUBAGA/presentations/DeepSec/FHStP_Memory_Safety/index.html
file:///home/lynx/SUBAGA/presentations/DeepSec/FHStP_Memory_Safety/index.html
file:///home/lynx/SUBAGA/presentations/DeepSec/FHStP_Memory_Safety/index.html

RUST UNSAFE MODE
Dereference a raw pointer
Call an unsafe function or method
Access or modify a mutable static variable
Implement an unsafe trait
Access fields of unions

Useful in system programming or code analysing data.

Source: Unsafe Rust (Unsafe Superpowers)

TLP:WHITE

https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html

RUST UNSAFE MODE (PUBLICATION)

Source: Studie University of Virginia, 2020

TLP:WHITE

https://www.cs.virginia.edu/~bjc8c/papers/evans20rust.pdf

RUST UNSAFE MODE (PUBLICATION)
Rust, an emerging programming language with explosive growth,
provides a robust type system that enables
programmers to write
memory-safe and data-race free code. To allow access to a machine’s
hardware and to
support low-level performance optimizations, a
second language, Unsafe Rust, is embedded in Rust. It

contains
support for operations that are difficult to statically check, such
as C-style pointers for access to
arbitrary memory locations and
mutable global variables. When a program uses these features, the
compiler
is unable to statically guarantee the safety properties
Rust promotes. In this work, we perform a large-scale
empirical
study to explore how software developers are using Unsafe Rust in
real-world Rust libraries and
applications. Our results indicate that
software engineers use the keyword unsafe in less than 30% of Rust
libraries, but more than half cannot be entirely statically checked
by the Rust compiler because of Unsafe
Rust hidden somewhere
in a library’s call chain. We conclude that although the use of the
keyword unsafe is
limited, the propagation of unsafeness offers
a challenge to the claim of Rust as a memory-safe language.

TLP:WHITE

C++ PHILOSOPHY
Light-weight abstraction
Simple and direct mapping to hardware
Zero-overhead abstraction mechanisms

You don't pay for what you don't use.
What you do use is just as efficient as what you could reasonably write by hand.
Exceptions (🙃):

Runtime type identification (RTTI, #include <typeinfo>)
Exceptions

Quelle: Foundations of C++

TLP:WHITE

https://www.stroustrup.com/ETAPS-corrected-draft.pdf

C++ MEMORY MANAGEMENT
Resource Acquisition Is Initialization (RAII) Konzept

Scope-Bound Resource Management (SBRM)
Constructor ensures reservation && initialisation
Resource are freed by destructors
Use of C++ features (object lifetime, scope exit, order of initialization, stack unwinding)

Garbage Collectors
C++ support until C++23 (removed afterwards, see)
Third party code - replacement of new / delete / std::allocator bzw. malloc() / free()

P2186R2

TLP:WHITE

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2186r2.html

MEMORY SAFETY
 for Memory Safety

(Not included in slides, CWE is better maintained.📚)

CWE Kategorien

TLP:WHITE

https://cwe.mitre.org/data/definitions/1399.html

MEMORY SAFETY & UNDEFINED
BEHAVIOUR

Memory safety is part of undefined behaviour (UB)
C++11 eliminated many cases
Post-C++11 code needs to observe Order of Evaluation
Correct C++ code has no undefined behaviour

C++ Reference Undefined Behaviour

TLP:WHITE

https://en.cppreference.com/w/cpp/language/eval_order
https://en.cppreference.com/w/cpp/language/ub

RAII CLASSES
RAII-observant code - doesn't create itself!
Function call in non-RAII classes

open() / close()
lock() / unlock()
init() / copyFrom() / destroy()

TLP:WHITE

(NON-)RAII CODE
std::mutex m;

void non_raii()

{

 m.lock(); // Mutex anlegen

 f(); // Wenn f() eine Exception wirft, wird m nie freigegeben

 if (not all_ok())

 return; // Frühzeitiges return(), Mutex bleibt

 m.unlock(); // Hier wird der Mutex freigegeben

}

// --- RAII code --

void raii_code()

{

 std::lock_guard lk(m); // RAII Klasse: "Mutex acquisition is initialization"

 f(); // Wenn f() eine Exception wirft, wird m freigegeben

 if (not all_ok())

 return(); // Frühzeitiges return(), Mutex wird freigegeben

}

TLP:WHITE

THE POWER OF 10

1. Avoid complex flow constructs, such as goto and recursion.
2. All loops must have fixed bounds. This prevents runaway code.
3. Avoid heap memory allocation.
4. Restrict functions to a single printed page.
5. Use a minimum of two runtime assertions per function.
6. Restrict the scope of data to the smallest possible.
7. Check the return value of all non-void functions, or cast to void to indicate the return value is useless.
8. Use the preprocessor sparingly.
9. Limit pointer use to a single dereference, and do not use function pointers.

10. Compile with all possible warnings active; all warnings should then be addressed before release of the
software.

Source: The Power of 10: Rules for Developing Safety-Critical Code

TLP:WHITE

https://web.eecs.umich.edu/~imarkov/10rules.pdf

THE POWER OF 10

1. Avoid complex flow constructs, such as goto and recursion.
2. All loops must have fixed bounds. This prevents runaway code.
3. Avoid heap memory allocation.
4. Restrict functions to a single printed page.
5. Use a minimum of two runtime assertions per function.
6. Restrict the scope of data to the smallest possible.
7. Check the return value of all non-void functions, or cast to void to indicate the return value is useless.
8. Use the preprocessor sparingly (i.e. not at all!).
9. Limit pointer use to a single dereference, and do not use function pointers.

10. Compile with all possible warnings active; all warnings should then be addressed before release of the
software.

Source: The Power of 10: Rules for Developing Safety-Critical Code

TLP:WHITE

https://web.eecs.umich.edu/~imarkov/10rules.pdf

MEMORY SAFETY GUIDELINES
Use smart pointers (unique_ptr, shared_ptr, weak_ptr)
Avoid using heap and dynamic memory
Use RAII
Static analysis (recommendation of Bjarne Stroustrup)
Use Modern C++

Based on C++11, C++14, C++17, C++20, …
Replace new with std::make_unique<>() and std::make_shared<>()
Use const, convert const to constexpr where possible

TLP:WHITE

STATIC ANALYSIS (1)

Output:

#include ⟨iostream⟩

using namespace std;

auto main() -> int {

 string s1 = "abcdefg";

 string_view s2 = s1; // std::string_view introduced in C++17

 cout << s2.length() << " " << s2 << endl;

 s1.erase(2,2);

 cout << s2.length() << " " << s2 << endl;

 return(0);

}

7 abcdefg

7 abefgg

TLP:WHITE

STATIC ANALYSIS (2)

No warnings, no errors, no hints.

clang++-17 -Wall -Wpedantic -std=c++20 -o memory_string memory_string.cc

clang++-17 -Wall -Wpedantic -std=c++20 -fsanitize=address -lasan -fuse-ld=lld-17 -o memory_string memory_string.cc

scan-build-17 clang++-17 -Wall -Wpedantic -std=c++20 -o memory_string memory_string.cc

clang-tidy-17 -p . -extra-arg=-std=c++20 -checks=boost-*,bugprone-*,clang-analyzer-*,cppcoreguidelines-*,modernize-*,cert-* \\

 memory_string.cc

clang-tidy-17 -p . -extra-arg=-std=c++20 -checks=* memory_string.cc

g++ -fanalyzer -std=c++20 -Wall -Wpedantic -o memory_string memory_string.cc

TLP:WHITE

WHAT ELSE IS THERE?
Tracing Garbage Collectors (GCs)

slow
„stop_world()“ issues, additional threads

Reference couting (RC)
slow (overhead)
depends on memory management

Borrow checking
adds complexity
C++ is sufficiently complex already

TLP:WHITE

STRATEGY FOR C++
„Borrowless affine style“, via unique_ptr & ownerships (from , , and)
Constraint references - as in SQL (from , , and)
Generational references & random generational references (from)
Simplified borrowing (from)

Vale Val Austral
Gel Inko Vale

Vale
Val

Source: Making C++ Memory-Safe Without Borrow Checking, Reference Counting, or Tracing Garbage
Collection

TLP:WHITE

https://vale.dev/
https://www.val-lang.dev/
https://austral-lang.org/
https://www.cs.utexas.edu/~wcook/Drafts/2008/gel.pdf
https://inko-lang.org/
https://vale.dev/
https://vale.dev/
https://www.val-lang.dev/
https://verdagon.dev/blog/vale-memory-safe-cpp

BORROWLESS AFFINE STYLE

Dereferencing unique_ptr is safe if
unique_ptr was initialised / contains sensible data
unique_ptr has not been std::moved

Stack objects are safe
Direct access („whole“ objects)
No pointer operations on stack

Avoid raw pointers and references (!)
Use unique_ptr or move semantics
Use an index / ID for fields
Read fields - take ownership first, swap fields out

Don't use raw arrays - use std::array (or similar collections)
Read element by taking ownership and removing it (avoids race conditions)

Memory safe subset of C++ Rust does the same (see &mut)TLP:WHITE

GENERATIONAL REFERENCES
All objects have a generation number (g_ref)
All memory access requires object address and valid g_ref
Free operations increase g_ref

// Makes an object

gowned⟨Ship⟩ ship = make_gowned(42);

// Makes a generational reference to it

gref⟨Ship⟩ shipRef = ship.ref();

// Does a generation check

auto shipHandle = shipRef.open();

// Prints 42

cout << shipHandle->fuel << endl;

Objects use heap, no real free operations (generation number stays).

TLP:WHITE

RANDOM GENERATIONAL REFERENCES
Generation number g_ref is replaced by PRNG number
Stochastic protection against collisions
ARM CPU Memory Tagging Extension (MTE) is similar

adds metadata to allocation/deallocation
tags memory regions

 available from Vale developersSample implementation in C++
Important: References are not part of the objects!

TLP:WHITE

https://github.com/Verdagon/ValeanCpp/blob/main/vref.h

CONSTRAINT REFERENCES
Put references directly into object
Introduce constraint_ref (shared_ref with references)
Objects out of scope

assert that reference (count) is zero
ensure no one is pointing at them

Similar to foreign key constraint in databases
Any constraint violations halts code

 available from Vale developersSample implementation in C++

TLP:WHITE

https://github.com/Verdagon/ValeanCpp/blob/main/cref.h

SIMPLIFIED UNIQUE BORROWING
Fix swap-out access by re-adding mutable non-owning pointers with rules:

Never access original objects while they exist
Never return these pointers
Never store these pointers in structs/arrays
Never alias them

Extending rules can re-allow shared_ptr
Swap out / protect accessed elements is required
Introduce const semantics for protection

Read
often! 🙃

Making C++ Memory-Safe Without Borrow Checking, Reference Counting, or Tracing Garbage Collection

TLP:WHITE

https://verdagon.dev/blog/vale-memory-safe-cpp

🪇 CONCLUSION 🪇
There is no zero-overhead memory safety for any language.
C++ never adds implicit overhead (design philosophy).
Modern C++ provides a complete toolbox for memory safety.
Modern C++ and memory safe techniques can be added gradually.
Programming languages need at least 10-15 years to mature.
Know your use cases!

Identify and protect critical sections.
Never deallocating memory is memory safe, too. 😉

Refactoring is cheaper than switching programming languages.

TLP:WHITE

QUESTIONS?

Source: Mesa Gets Patch For Official Intel Whiskey Lake Support

TLP:WHITE

https://www.phoronix.com/news/Mesa-Whiskey-Lake-Patch

SOURCES
 programming language

 programming language

 programming language
 programming language

Austral
Boehm-Demers-Weiser Garbage Collector
C++ Best Practices
C++ Core Guidelines
C++ Exceptions
Can C++ Be Saved? Bjarne Stroustrup on Ensuring Memory Safety
CWE CATEGORY: Comprehensive Categorization: Memory Safety
Inko
Oilpan: C++ Garbage Collection (Chrome Project)
The Power of 10: Rules for Developing Safety-Critical Code
Towards memory safety in C++ (P2771R0)
Type-and-resource safety in modern C++
What is Modern C++?
Val
Vale

TLP:WHITE

https://austral-lang.org/
https://github.com/ivmai/bdwgc
https://leanpub.com/cppbestpractices
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.org/wiki/faq/exceptions
https://thenewstack.io/can-c-be-saved-bjarne-stroustrup-on-ensuring-memory-safety/
https://cwe.mitre.org/data/definitions/1399.html
https://inko-lang.org/
https://chromium.googlesource.com/v8/v8.git/+/HEAD/include/cppgc/
https://en.wikipedia.org/wiki/The_Power_of_10%3A_Rules_for_Developing_Safety-Critical_Code
https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2771r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2410r0.pdf
https://www.modernescpp.com/index.php/what-is-modern-c/
https://www.val-lang.dev/
https://vale.dev/

DOOM 3 SOURCE CODE HINTS
Code should be locally coherent and single-functioned: One function should do exactly one thing. It should be
clear about what it's doing.
Local code should explain, or at least hint at the overall system design.
Code should be self-documenting. Comments should be avoided whenever possible. Comments duplicate
work when both writing and reading code. If you need to comment something to make it understandable it
should probably be rewritten.

Source: The Exceptional Beauty of Doom 3's Source Code

TLP:WHITE

https://web.archive.org/web/20131211065348/https://kotaku.com/454293019

ABOUT THE AUTHOR
 was born in the year of Atari's founding and the release of the game Pong. Since his early

youth he started
taking things apart to see how they work. He couldn't even pass construction sites without
looking for electrical wires that
 might seem interesting. The interest in computing began when his

grandfather bought him a 4-bit microcontroller with 256
byte RAM and a 4096 byte operating system, forcing
him to learn Texas Instruments TMS 1600 assembler before any
other programming language.

After finishing school he went to university in order to study physics. He then collected experiences with a C64,
a C128,
two Commodore Amigas, DEC's Ultrix, OpenVMS and finally GNU/Linux on a PC in 1997. He is using
Linux since this day
 and still likes to take things apart und put them together again. Freedom of tinkering
brought him close to the Free
Software movement, where he puts some effort into the right to understand
how things work – which he still does.

René is a senior systems administrator, a lecturer at the University of Applied Sciences Technikum Wien and
FH
 Burgenland, and a senior security consultant. He uses all the skills in order to develop security
architectures,
 maintain/improve IT infrastructure, test applications, and to analyse security-related
attributes of applications, networks
 (wired/wireless, components), (cryptographic algorithms), protocols,
servers, cloud platforms, and more indicators of
modern life.

René „Lynx“ Pfeiffer

TLP:WHITE

mailto:rpfeiffer@deepsec.net

